Application of Experimental Design to Optimize the Synthesis of CdO Cauliflower-like Nanostructure Using Mechanochemical Method

Document Type: Research Paper

Authors

1 Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran

2 Department of Chemistry, Saveh Branch, Islamic Azad University, Saveh, Iran

10.7508/jns.2011.02.006

Abstract

Cauliflower-like nanostructure of cadmium oxide was synthesized by utilizing mechanochemical reaction followed calcination procedure for the first time. The design of experiment (DOE) by Taguchi method was used to study influence of the chosen factors and to consider optimum conditions of the experiments. The temperature of calcining, the duration of milling, the duration of calcining and reactants molar ratio (M/L) are four chosen factors for DOE. The value of band gap energy was calculated through UV-visible absorption spectroscopy and Tauc relation. Data analysis was performed using Minitab and Qualitek-4 statistical softwares. The optimum conditions for preparing cauliflower-like structure were predicted and also, influence of each factor was determined. The temperature and duration of calcining with the percentage contribution of 68.23 and 17.72%, respectively are the most effective factors at this design.

Keywords


[1] W. Dong, C. Zhu, Opt. Mater, 22 (2003) 227-233.

[2] R. Vinodkumar, K.J. Lethy, P.R. Arunkumar, R.R. Krishnan, N. Venugopalan Pillai, V.P. Mahadevan Pillai, R. Philip, Mater. Chem. Phys, 121 (2010) 406-413.

[3] T.J. Kuo, M.H. Huang, J. Phys. Chem, B 110 (2006) 13717-13721.

[4] Q. Chang, C. Chang, X. Zhang, H. Ye, G. Shi, W. Zhang, Y. Wang, X. Xin, Y. Song, Opt Commun, 274 (2007) 201-205.

[5] I. Akyuz, S. Kose, E. Ketenci, V. Bilgin, F. Atay, J. Alloys Compd, 509 (2011) 194.

[6] F. Atay, I. Akyuz, S. Kose, E. Ketenci, V. Bilgin, J Mater Sc: Mater Electron, 22 (2011)  492-498.

[7] S.A. Mayén-Hernández, G. Torres-Delgado, R. Castanedo-Pérez, J.G. Mendoza-Alvarez, O. Zelaya-Angel, Mater. Chem. Phys, 115 (2009) 530-535.

[8] A.A. Dakhel, Curr. Appl. Phys, 11(2011) 11-15.

[9] M.A. Grado-Caffaro, M. Grado-Caffaro, Phys. Lett. A, 372 (2008) 4858-4860.

[10] F. Yakuphanoglu, Appl. Surf. Sci, 257(2010)1413-1419.

[11] R.S. Mane, H.M. Pathan, C.D. Lokhande, S.H. Han, Sol. Energ, 80 (2006) 185-190.

[12] T.V.S. Sarma, S. Tao, Sensor Actuator B: Chem, 127 (2007) 471-479.

[13] A.S. Kamble, R.C. Pawar, J.Y. Patil, S.S. Suryavanshi, P.S. Patil, J. Alloys Compd, 509 (2011) 1035-1039.

[14] R.R. Salunkhe, C.D. Lokhande, Sensor. Actuator. B: Chem, 129 (2008) 345-351.

[15] R.K. Gupta, K. Ghosh, R. Patel, P.K. Kahol, J. Alloys Compd, 509 (2011)4146-4149.

[16] M.H. Kim, Y.U. Kwon, J. Phys. Chem. C, 113(2009) 17176-17182.

[17] X. Liu, C. Li, S. Han, J. Han, C. Zhou, Appl. Phys. Lett, 82(2003)1950-1952.

[18] F. Yakuphanoglu, M. Caglar, Y. Caglar, S. Ilican, J. Alloys Compd, 506(2010)188-193.

[19] R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, Mater. Chem. Phys, 125 (2011)277-280.

[20] G. Singh, I.P.S. Kapoor, R. Dubey, P Srivastava, Mater Sci Eng: B, 176 (2011)121- 126.

[21] J. Li, Y. Ni, J. Liu, J. Hong, J. Phys. Chem. Solid, 70(2009)1285-1289.

[22] A. Dakhel, A. Ali-Mohamed, J. Sol-Gel Sci. Technol, 55(2010)348-353.

[23] G. Choudhary, V. Raykar, S. Tiwari, A. Dashora, B.L. Ahuja, Phys. Status Solidi B, 248 (2011) 212-219.

[24] H.B. Lu, L. Liao, H. Li, Y. Tian, D.F. Wang, J.C. Li, Q. Fu, B.P. Zhu, Y. Wu, Mater. Lett, 62 (2008) 3928-3930.

[25] R.R. Salunkhe, D.S. Dhawale, U.M. Patil, C.D. Lokhande, Sensor Actuator B: Chem, 136 (2009) 39-44.

[26] T. Ghoshal, S. Kar, S.K. De Appl. Surf. Sci, 255(2009)8091-8097.

[27] A. Tadjarodi, M. Imani, Mater. Lett, 65 (2011) 1025-1027.

[28] M. Ramazani, A. Morsali, Ultrason. Sonochem, 18 (2011) 1160-1164.

[29] A. Askarinejad, A. Morsali, Chem. Eng. J, 150 (2009) 569-571.

[30] Z-x. Yang, W. Zhong, Y-x. Yin, X. Du, Y. Deng, C. Au, Y-w. Du, Nanoscale Res. Lett, 5 (2010) 961-965.

[31] M. Ghosh, C.N.R. Rao, Chem. Phys. Lett, 393 (2004) 493-497.

[32] H. Yang, G. Qiu, X. Zhang, A. Tang, W. Yang, J. Nanopart. Res, 6(2004)539-542.

[33] C. Suryanarayana, Progr. Mater. Sci, 46(2001)1-184.

[34] L.C. Damonte, M.A. Hernández-Fenollosa, B. Marí, J. Alloys Compd, 434-435 (2007).

[35] M. Mahmoodian, A.B. Arya, B. Pourabbas, Dental Mater, 24 (2008) 514-521.

[36] A. Coulibaly, B. Mutel, D. Ait-Kadi, Comput. Ind, 58 (2007) 567-577.

[37] G. Taguchi, R. Jugulum, The Mahalanobis-Taguchi strategy a pattern Technolog system, first ed., John Wiley & Sons, New York, 2002.

[38] M. Edrissi, R. Norouzbeigi, J. Nanopart. Res, 12 (2010) 1231-1238.

[39] S.C. Singh, R. Gopal, J. Phys. Chem. C 114 (2010) 9277-9289.

[40] S. Singh, R. Swarnkar, R. Gopal, J. Nanopart. Res, 11 (2009) 1831-1838.

[41] N. J. Tharayil, R. Raveendran, A. V. Varghese, P. G. Chithra, Indian J. Eng. Mater. Sci, 15 (2008) 489-496.