Direct oxidation of benzene to phenol in liquid phase by H2O2 over vanadium catalyst supported on highly ordered nanoporous silica

Document Type: Research Paper

Authors

1 School of Chemistry, College of Science, University of Tehran, Tehran, Iran

2 Department of Chemistry, Faculty of Science, Alzahra University, Tehran, Iran

10.7508/jns.2011.01.010

Abstract

Vanadium supported on highly ordered nanoporous silica (VOx-LUS-1) was synthesized and characterized by XRD, Nitrogen adsorption‑desorption isotherms and UV-visible spectrophotometer. Direct oxidation of benzene to phenol in liquid phase by H2O2 peroxide were examined by using various solvents (methanol, acetone, acetic acid, acetonitryl). The maximum yield (25%) and selectivity (73%) of the phenol  produced were obtained in the presence of acetic acid. The catalyst can be reused for  several times without any appreciable loss of activity.

Keywords


[1]  D. Bianchi, l. Balducci, R. Botelo, R. Daloisio, M. Rieci, G. Spano,  R. Tassnari,C. Toniniand , R. Ungarelli, Adv. Synth. Catal. 349 (2007) 979. 

[2]  K.Weissermehl, H. J. Arpe: Industrielle Organsche Chemie, VCH, Weinheim,1998.

[3]  S. Niwa, M .Eswaramoorthy, J. Nair, A. Raj, N .Itoh, H .Shoji, T. Namba F. Mizukami, Science, 295 (2002) 105.

[4]  D .Bianchi, R .Bortolo, R. Tassinari, M. Ricci, R. Vignola, Angew. Chem. Int. Ed., 39 (2000) 4321.

[5]  L .Balducci, D .Bianchi, R. Bortolo, R. D’Aloisio, M. Ricci, R. Tassinari, R. Ungarelli, Angew. Chem. Int. Ed., 42 (2003) 4937

[6]  M .Tani, T. Sakamoto, S. Mita, S. Sakaguchi, Y. Ishii,  Angew. Chem. Int. Ed., 117 (2005) 2642.

[7]  A. Bhaumik, P. Mukherjee, R. Kumar1, J. Catal. 178 (1998) 101.

[8]  A. Corma, V. Fornés, S. Iborra, M. Mifsud, M. Renz, J. Catal. 221 (2004) 67.

[9]  W. T. Dixon, R. O. C. Norman, J. Chem. Soc. 4 (1976) 4857.

[10] K. Lemke, K. Jähnisch, H. Ehrich, U. Lohse, H. Berndt, Appl. Catal. 243 (2003) 41.

[11] S. Yamaguchi, S. Sumimoto, Y. Ichihashi, S. Nishiyama, Shigeru Tsuruya, Ind. Eng. Chem. Res. 44 (200) 1.

[12] Y. Tang, J. Zhang, Tran. Metal. Chem. 31(2006) 299.

[13] J. Zhang, Y. Tang , G. Li , C. Hu,  Appl. Catal. A,Gen. 278( 2005) 251. 

[14] Y. Masumoto, R. Hamada, K. Yokota, S. Nishiyama,  Shig, Appl. Catal. A.184 (2005) 215.

[15] Y. W. Chenand,Y. H. Lu, Ind. Eng . Chem. Res. 38 (1999) 1893.

[16] Y. Gu, X. Zhao, G. Zhang, H. Diong, Y. Shan, Appl. Catal A. 328 (2007) 150.

[17] L. Bonneviot, M. Morin, A. Badiei, Patent WO 01/55031 A1, 2001.

[18] A. Badiei, L. Bonnoviot, N. Crowther, G. Mohammadi Ziarani, J. Organomet. Chem. 691 (2006) 5911.

[19] P. Van der Voort, M. Morey, G.D. Stucky, M. Mathieu, E.F.Vansant, J. Phys. Chem. B 102 (1998) 585.

[20] M. Morey, A. Davidson, H. Eckert, G. Stucky,  Chem. Mater. 8 (1996) 482.

[21] Z. Luan, J. Xu, H. He, J. Klinowski, L. Kevan: J. Phys. Chem., 100 (1996)19595.

[22] L. Chia-Hung ,L.  Tien-Sung, M. Chung-Yuan, J. Phys. Chem .111 (2007) 3873.

[23] S. Shylesh, S.P. Mirajkar, A.P. Singh, J. Mol. Catal. A: Chem.  239 (2005) 57.

[24] A. Tuel, Micropor . Mesopor. Mater. 27 (1999) 151.

[25] K.Geon-Joong , C.Dong-Su, K.Kwang-Ho,K. Wan-Suk, K. Jong- Ho, S. Hiroshi, Catal. Lett, 31 (1995) 91.

[26] T. Radhika, S. Sugunan, J. Mol. Catal. A: Chem. 250 (2006) 169.

[27] R. Neumann, M. Levin-Elad, Appl. Catal. A 122 (1995) 85.

[28] D. R. C. Huybrechts, P. L. Buskens, P. A. Jacobs, J. Mol. Catal. 71 (1992) 129.

[29] K. Bahranowski, R. Dula, M. Gasior, M. Labanowska, A. Michalik, L. A. Vartikian, E. M. Serwicka, Appl. Clay Sci. 18 (2001) 93.

[30] M. Iwamoto, J. Hirata, K. Matsukami, S. Kagawa, J. Phys. Chem. 87 (1983) 903.

[31] S. E. Dapurkar, A. Sakthivel, P. Selvam, J. Mol. Catal. A: Gen. 223 (2004) 241.