Synthesis and characterization of high-temperature ceramic YBCO nanostructures prepared from a novel precursor

Document Type: Research Paper


1 Plasma physics Research Center, Science and Research, Islamic Azad University, Tehran, Iran, Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317–51167, Iran

2 Plasma physics Research Center, Science and Research, Islamic Azad University, Tehran, Iran



As a new precursor, [tris(2-hydroxyacetophenato) triaqua(III)], [Y(HAP)3(H2O)3]; complex was used in thermal decomposition process for the synthesis of rod-like high-temperature ceramic YBCO with length of about 320-350 nm and diameters 60–90 nm. The as-synthesized products were characterized by XRD, FT-IR, TEM, SEM and EDX analyses. The results showed that by using fine raw materials, the calcination temperature can be reduced to 870 ºC. It was found that this type of precursor have clearly effects on the size and morphology of product because the organic ligands around yttrium center act like a protecting agent to prevent agglomeration.


[1] S. Grigoryan, A. Manukyan, A. Hayrapetyan, A. Arzumanyan, A. Kuzanyan, Y. Kafadaryan, E. Vardanyan, Supercond. Sci. Technol. 16 (2003) 1202–1206.

[2] T. Naito, H. Fujishiro, K. Iida, M. Murakami, Physica C 468 (2008) 1428–1430.

[3] S. Nariki, N. Sakai, I. Hirabayashi, M. Yoshikawa, Y. Itoh, T. Nakamura, H. Utumi, Physica C 468 (2008) 1451–1455.

[4] M. Matsui, N. Sakai, M. Murakami, Physica C 384 (2003) 391–398.

[5] H.C. Yang, B.D. Yao, H.E. Horng, Supercond. Sci. Technol. 1 (1988) 160–162.

[6] H. Khosroabadi, B. Mossalla, M. Akhavan, Phys. Rev. B 70 (2004) 134509–18.

[7] N.H. Babu, K. Iida, Y. Shi, D.A. Cardwell, Physica C 468 (2008) 1340–1344.

[8] M.Z. Shoushtari, A. Bahrami, M. Farbod, Phys. Stat. Sol. (c) 3 (9) (2006) 2994–2998.

[9] N. Chen, K.C. Goretta, M.T. Lanagan, D. Shi, M.A. Patel, I. Bloom, M.C. Hash, B.S. Tani, D.W. Capone, Supercond. Sci. Technol. 1 (1988) 177–179.

[10] F. Delorme, M. Hervieu, I. Monot-Laffez, C. Harnois, G.Desgardin, Supercond. Sci. Technol. 14 (2001) 973–977.

[11] Y. Gao, Y. Li, K.L. Merkle, J.N. Mundy, C. Zhang, U. Balachandran, R.B. Poeppel, Matterials Letters 9 (10) (1990) 347–352.

[12] C.J. Kim, N. Qadir, A. Mahmood, Y.H. Han, T.H. Sung, Physica C 463–465 (2007) 344–347.

[13] D. Seron, D.E. Oates, J. Halbritter, Physica C 468 (2008) 54–59.

[14] X.L. Xu, J.D. Guo, Y.Z. Wang, A. Sozzi, J. Crystal Growth 269 (2004) 625–629.

[15] H.Y. Pan, X.L. Xu, J.D. Guo, Materials Letters 57 (2003) 3869–2873.

[16] S.R. Hall, Adv. Mater. 18 (2006) 487–490.

[17] Z.A.C. Schnepp, S.C. Wimbush, S. Mann, S.R. Hall, Adv. Mater. 20 (2008) 1782–1786.

[18] Y. Greenberg, Y. Lumelsky, M.S. Silverstein, E. Zussman, J. Mater. Sci. 43 (2008) 1664–1668.

[19] F. Davar, M. Salavati-Niasari, N. Mir, K. Saberyan, M. Monemzadeh, E. Ahmadi, Polyhedron 29 (2010) 1747–1753.

[20] M. Salavati-Niasari, N. Mir, F. Davar, Journal of Physics and Chemistry of Solids 70 (2009) 847–852.

[21] P.M Grant, R.B. Beyers, E.M. Engler, G. Lim, S.S.P. Parkin, M.L. Ramirez, V.Y. Lee, A. Nazzal, J.E. Vazquez, R.J. Savoy, Phys. Rev. B 35 (1987) 7242–7244.

[22] M. Salavati-Niasari, F. Davar, Mater. Lett. 63 (2009) 441–443.

[23] F. Davar, M. Salavati-Niasari, Z. Fereshteh, J. Alloys Compd. 496 (2010) 638–643.

[24] M. Salavati-Niasari, N. Mir, F. Davar, J. Alloys Compd. 476 (2009) 908–912.