Chemico- thermal synthesis of nano-structured cobalt with distinct magnetic property

Document Type: Research Paper


School of Metallurgy and Materials Engineering, University of Tehran, Tehran.



The synthesis of nano- structured cobalt through a controlled chemical process followed by heat treating at various temperatures is studied. The product is characterized by ICP, XRD, FESEM , and TEM, indicating that the as- synthesized particles have an amorphous structure with 1.76 for Co/B ratio, an average size of 50 nm. The transformation of intermediate phases into single phase nano- crystalline metallic cobalt during the heat treatment is investigated by DSC analysis. The mean crystallite size of obtained cobalt was 30 nm. The decrease in coercivity (4344.93A/mf) with the sharp increase in saturation magnetization (1.41×10-4 Am2/kg) presents excellent ferro- magnetic properties for nano- crystallite cobalt.


[1] D.V. Talapin, E.V. Shevchenko, H. Weller, G. Schmid, Nanoparticles: From Theory to  Application, first ed., Wiley, Weinheim, 2004.

[2] C. Petit, S. Rusponi, H. Brune, J. Appl. Phys. 95 (2004) 4251- 4260.

[3] I.W. Park, M. Yoon, Y.M. Kim, J. Magn. Magn. Mater. 272- 276 (2004)1413- 1414.

[4] V. F. Puntes, K. M. Krishnan, A.P. Alivisatos, Science. 291(2001) 2115- 2117.

[5] C.B. Murray, S.Sun, W. Gaschler, IBM J. Res. Dev. 45 (2001) 47-56.

[6] X.L. Dong, C.J. Choi, B.K. Kim, Scripta    Mater. 47 (2002) 857- 861.

[7] S. Sun, C.B. Murray, J. Appl. Phys. 85 (1999) 4325- 4330.

[8] C. Luna, M. P. Morales, C. J. Serna, M.    Vazquea, Mater.Sci.Engi.C.23 (2003) 1129- 1132.

[10] G.N. Glavee, K. J. Klabunde, C. M. Sorensen, G.C. Hadjipanayis, Languir. 9 (1993)  162- 169.

[11] B. H. Liu, Z. P. Li, S. Suda, J. Alloys Compd. 468 (2009) 493- 498.

[12] J.Shen, Z.Li, Q. Yen, Y. Chen, J. Phys. Chem.         97 (1993) 8504- 8511.

[13] B.D.Cullity, S.R. Stock, Elements of X- Ray Diffraction, third ed., Addison- Wesley, Menlo Park, 2001.

[14] L. Yiping, G. C. Hadjipanayis, C.M. Sorensen, J. Magn. Magn.Mater.79 (1989) 321- 326.

[15] H. Li, Y. Wu, H. Luo, M. Wang, Y. Xu, J. Catal. 214 (2003) 15-25.

[16] A. Hernando, A. Gonzalez, C. Ballesteros, A. Zern, D. Fiorani, F. Lucari, Nanostruct. Mater. 11 (1999) 783-788.

[17] G.N. Glavee, K.J. Klabunde, C.M. Sorensen. G.C.    Hadjapanyis, Languir. 8 (1992) 771- 773.

[18] A. K. Srivastava, S. Madhavi, R.V. Ramanujan, Phys. Status.SolidiA.207(2010) 963- 966.

[19] A. Pozio, M. De Francesco, G. Monteleone, R. Oronzio, S. Galli, C. D’ Angelo, M. Marrucci, Int. J. Hydrogen Energy. 33 (2008) 51-56.

[20] P.Patnaik,Handbook of Inorganic Chemical Compounds, first ed., McGraw- Hill, NewYork, 2002.