The Effect of TiO2-Nanoparticle on the Activity and Stability of Trypsin in Aqueous Medium

Document Type: Research Paper


1 Department of Biology, Faculty of Science, University of Shahrekord, Shahrekord, I. R. Iran.

2 Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran


Trypsin (E.C. is a serine protease commonly used in proteomics for digestion of proteins. In the present study, the effect of nano-TiO2 on the conformation and catalytic activity of trypsin were studied. The thermal denaturation of trypsin has been investigated in the presence and absence of nano-TiO2 over the temperature range (293-373 K) at pH 3.0 and 7.25, using temperature scanning spectroscopy. In presence of nani-TiO2, the ester lytic activity of trypsin is decreased. The result indicates that Nano-TiO2 is a non-competitive inhibitor for enzyme trypsin. With the addition of TiO2 to protein solution at pH 3.0, the maximum intensity of emission spectrum of trypsin is increased. But at pH 7.25, the maximum intensity of emission spectrum of trypsin is decreased. The result of fluorescence spectroscopy indicated that the structure of the Trp residue environments was altered. Increasing the concentration of nano-TiO2 decreases the stability of trypsin to thermal denaturation.


1. Yong Y, Bai Y, Li Y, Lin L, Cui Y, Xia C. Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization. J. Magn. Magn. Mater., 2008; 320: 2350-2355
2. Handy R.D, von der Kammer F, Lead J.R, Hassellov M, Owen R and Crane M. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology. 2008; 17:287-314.
3.. Rekha K, Nirmala M, Nair M.G and Anukaliani A. Structural, optical, photocatalytic and antibacterial activity of zinco xide and manganese doped zinc oxide nanoparticle. Phys. B., 2010;405: 3180-3185.
4.. Kasemets K, Ivask A, Dubourguier H.C and Kahru A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro., 2009;12: 1645-1654.
5. Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev., 2012; 41:2545–61.
6. Wei H, Zhuo RX, Zhang XZ. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog Polym Sci., 2013; 38:503–35.
7. Zhu M.Z, Feng W.Y, Wang B, Wang T.C, Gu Y.Q, Wang M, Wang Y, Ouyang H, Zhao Y.L, Chai Z.F. The Design of Stable, Well-Defined Polymer-Magnetite Nanoparticle Systems for Biomedical Applications. Toxicology. 2008; 247:102-111.
8. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland. Chemical oxidation and DNA damage caused by inorganic sunscreen ingredients. FEBS letters., 1997; 418: 87-90.
9. You C.C, De M, Rotello V.M. Monolayer-protected nanoparticle protein interactions, Curr. Opin. Chem. Biol., 2005; 9, 639-646.
10. Wang H, Wick R.L, Xing B, Environmental Pollution. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. 2009; 157: 1171-1177.
11. Xu Z, Liu XW, Ma YS, Gao HW. Interaction of nano-TiO2 with lysozyme: insights into the enzyme toxicity of nanosized particles. Environ Sci Pollut Res., 2009;17:798–806.
12. Masciangioli T and Zhang W.X. Environmental technologies at the nanoscale. Environmental Science and Technology., 2003; 37: 102A–108A.
13. Bystrzejewska-Piotrowska G, Golimowski J, Urban P.L. Nanoparticles: heir potential toxicity, waste and environmental management. Waste Management., 2009; 29: 2587-2595.
14. Heinlaan M, Ivask A, Blinova I, Dubourguier H.C, Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere., 2008; 71:1308 – 1316.
15. Donaldson K, Stone V, Seaton A, MacNee W. Ambient particle inhalation and the cardiovascular system: Potential mechanisms. Environ Health Persp., 2001; 109:523–527.
16. Wang J.J, Sanderson B.J.S, Wang H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis., 2007; 628: 99-106.
17. Wang J, Wu J, Zhang Z. H, Zhang X. D, Wang L, Xu L, Guo B. D, Li H. and Tong J. Sonocatalytic damage of Bovine Serum Albumin (BSA) in the presence of nanometer Titanium dioxide (TiO2) catalyst. Chinese Chemical Letters., 2005; 16:1105
18. Xu Z, Wang SL, Gao HW. Effects of nano-sized silicon dioxide on the structures and activities of three functional proteins. J Hazard Mater. 2010;180:375–383.
19. Sadeghi kaji S., Shareghi B., Salavati M. Urease Activity Protection with EDTA against Nanoparticles (Fe2O3 and Fe3O4) Inactivation. Journal of Nanostructures., 2014; 4:217-226.
20. Lehninger A.L, Nelson D. L and Cox M. Lehninger principles of biochemistry. New York; H Freeman
and Company.2005.
21. Farhadian S, Shareghi B, Salavati M, Amooaghaei R. Spectroscopic studies on the interaction of Nano-TiO2 with lysozyme. JNS., 2012; 1:95-103.
22. Lakowicz J.R, Weber G. Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry., 1973; 12:4161-4170.
23. Oliva F.Y, Avalle L.B, Camara O.R, De Pauli C.P. Adsorption of humanserum albumin (HAS) onto colloidal TiO2 particles, Part I Journal of colloid and interface science., 2003; 261:299-311.
24. Shareghi B, Hashemian A, Farhadian S, Salavati-Niasari M, Saffar B, Moshtaghi H. Thermal Inactivation and Aggregation of Lysozyme in the Presence of Nano-TiO2 and Nano-SiO2 in Neutral pH. JNS., 2013; 3 :281-288.
25. Privalov P.L. Stability of proteins: small globular proteins. Adv protein chem., 1979; 33: 167-241.
26. Shareghi B, Arabi M. Anti-fertility effect of nicotine. Thermal Iranian Journal of Science & Technology., 2008; 32 (323-330).
27. Shareghi B, Farhadian S, Zamani N, Salavati-Niasari M, Moshtaghi H, Gholamrezaei S. Investigation the activity and stability of lysozyme on presence of magnetic nanoparticles. Journal of Industrial and Engineering Chemistry., 2015; 21: 862-867.