A Novel Nanofiltration Membrane Prepared with PAMAM and Graphene oxide for Desalination

Document Type: Research Paper


1 Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran

2 Department of Carpet, Faculty of Architecture & Art, University of Kashan, Kashan, Iran


Nanofiltration is increasingly gaining attention in many separation and treatment processes such as water softening, color removal and separation of medicines. Nanofiltration membranes are often negatively charged, displaying separation characteristics in the intermediate range between reverse osmosis and ultrafiltration. In this research, a novel nanofiltration membrane prepared with poly(amidoamine) (PAMAM) dendrimer and graphene oxide (GO) on amidoximated acrylic ultrafiltration membrane was investigated. Scanning Electron Microscopy (SEM) and contact angle of the water were employed to characterize the chemical and physical changes of resulting membranes. The flux and rejection of resulting membranes increased with increasing generation numbers of PAMAM for NaCl concentration. The salts rejections order of resulting membrane is CaCl2>MgSO4>NaCl>Na2SO4, which shows that resulting membranes were all positively charged NF membrane. The PAMAM/GO NF membrane is especially suitable for separating cationic solutes from others. This kind of membrane is also particularly suitable for treating acidic feed. The studied membrane possesses maximum operating pressure lower than 4 bar and excellent stability during continuous filtration at 27±2°C.


1. Cadotte J, Forester R, Kim M, Petersen R, Stocker T. Nanofiltration membranes broaden the use of membrane separation technology. Desalination. 1988; 70: 77–88.
2. Raman LP, Cheryan M, Rajagopalan N. Consider nanofiltration for membrane separations. Chem. Eng. Prog. 1994; 90: 68–74.
3. Frank M, Bargeman G, Zwijnenburg A, Wessling M. Capillary hollow fiber nanofiltration membranes. Sep. Purif. Technol. 2001; 22–23: 499–506.
4. Petersen RJ. Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 1993; 83: 81–150.
5. Schaep J, Van der Bruggen B, Vandecasteele C, Wilms D. Influence of ion size and charge in nanofiltration. Sep. Purif. Technol. 1998; 14: 155–162.
6. Xu Y, Lebrun RE. Investigation of the solute separation by charged nanofiltration membrane: effect of pH, ionic strength and solute type. J. Membr. Sci. 1999; 158: 93–104.
7. Yanagishita H, Kitamoto D, Haraya K, Nakane T, Tsuchiya T, Koura N. Preparation and pervaporation performance of polyimide composite membrane by vapor deposition and polymerization (VDP). J. Membr. Sci. 1997; 136: 121–126.
8. Hayakawa Y, Terasawa N, Hayashi E, Abe T. Plasma polymerization of cyclic perfluoroamines and composite membranes for gas separation. J. Appl. Polym. Sci. 1996; 62(6): 951–954.
9. Zhao Z-P, Li J, Zhang D-X, Chen C-X. Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma: I. Graft of acrylic acid in gas. J. Membr. Sci. 2004; 232: 1–8.
10. Bae B, Chun B-H, Ha H-Y, Ohc I-H, Kim D. Preparation and characterization of plasma treated PP composite electrolyte membranes. J. Membr. Sci. 2002; 202: 245–252.
11. Yamaguchi T, Nakao S, Kimura S. Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures. Macromolecules. 1991; 24: 5522–5527.
12. Ulbricht M, Schwarz H-H. Novel high performance photo-graft composite membranes for separation of organic liquids by pervaporation. J. Membr. Sci. 1997; 136: 25–33.
13. Zhigong R, Guixiang L, Sugo T, Okamoto J. Gas-phase and liquid-phase pre-irradiation grafting of AAc onto LDPE and HDPE films for pervaporation membranes. Radiat. Phys. Chem. 1993; 39 (5): 421-428.
14. Yanagishita H, Kitamoto D, Haraya K, Nakane T, Okadab T, Matsuda H, Idemoto Y, Koura N. Separation performance of polyimide composite membrane prepared by dip coating process. J. Membr. Sci. 2001; 188: 165–172.
15. Peterson J, Peinemann K-V. Novel polyamide composite membranes for gas separation prepared by interfacial polycondensation. J. Appl. Polym. Sci. 1997; 63(12): 1557–1563.
16. Morgan W. Condensation Polymers: By Interfacial and Solution Methods, Interscience, New York, 1665; 19–64.
17. Yanagishita H, Arai J, Sandoh T, Negishi H, Kitamoto D, Ikegami T, Haraya K, Idemoto Y, Koura N. Preparation of polyimide composite membranes grafted by electron beam irradiation. J. Membr. Sci. 2004; 232: 93–98.
18. Balachandra AM, Baker GL. Preparation of composite membranes by atom transfer radical polymerization initiated from a porous support. J. Membr. Sci. 2003; 227: 1–14.
19. Pei G, Cheng G, Du Q. Preparation of chelating resin filled composite membranes and selective adsorption of Cu(II). J. Membr. Sci. 2002; 196: 85–93.
20. Tongwen X, Weihua Y. A novel positively charged composite membranes for nanofiltration prepared from poly(2,6-dimethyl-1,4-phenylene oxide) by in situ amines crosslinking. J. Membr. Sci. 2003; 215: 25–32.
21. Tomalia DA, Naylor AM. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. 1990; 29(2): 138–175.
22. Tomalia DA. Starburst® dendrimers - Nanoscopic supermolecules according to dendritic rules and principles. Macromol. Symp. 1996; 101: 243–255.
23. Yoon HC, Hong MY, Kim HS. Reversible association/dissociation reaction of avidin on the dendrimer monolayer functionalized with a biotin analogue for a regenerable affinity-sensing surface. Langmuir. 2001; 17: 1234–1239.
24. Bosman AW, Janssen HM, Meijer EW. About dendrimers: Structure, physical properties, and applications. Chem. Rev. 1999; 99: 1665–1688.
25. Diallo MS, Balogh L, Shafagati A, Johnson Jr JH, Goddard WA, Tomalia DA. Poly(amidoamine) dendrimers:  A new class of high capacity chelating agents for Cu(II) ions. Environ. Sci. Technol. 1999; 33: 820–824.
26. Chung T-S, Chng ML, Pramoda KP, Xiao Y. PAMAM dendrimer- induced cross-linking modification of polyimide membranes. Langmuir. 2004; 20: 2966–2969.
27. Kovvali AS, Chen H, Sirkar KK. Dendrimer membranes: A CO2-selective molecular gate. J. Am. Chem. Soc. 2000; 122: 7594–7595.
28. Kovvali AS, Sirkar KK. Dendrimer liquid membranes:  CO2 separation from gas mixtures. Ind. Eng. Chem. Res. 2001; 40: 2502–2511.
29. Kovvali AS, Sirkar KK., Carbon dioxide separation with novel solvents as liquid membranes. Ind. Eng. Chem. Res. 2002; 41: 2287–2295.
30. Liu Y, Zhao M. pH-switchable, ultrathin permselective. membranes prepared from multilayer polymer composites. J. Am. Chem. Soc. 1997; 119: 8720–8721.
31. Willem DRJ, Nicola RCJ, Arie Z. Semipermeable composite membrane, method for the preparation of such a membrane, and its use, EP0780152, 1997.
32. Suk JW, Piner RD, An J, Ruoff RS. Mechanical properties of monolayer graphene oxide. ACS Nano. 2010; 4(11): 6557-6564.
33. Lerf A, He H, Forster M, Klinowski JJ. Structure of graphite oxide revisited. J. Phys. Chem. B. 1998; 102: 4477-4482.
34. Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang YJ. Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J. Mater. Chem. 2010; 20: 9635-9643.
35. Stankovich S, Dikin DA, Compton OC, Dommett GHB, Ruoff RS, Nguyen ST. Systematic post-assembly modification of graphene oxide paper with primary alkylamines. Chem. Mater. 2010; 22: 4153-4157.
36. Zhu Y, Higginbotham AL, Tour JM. Covalent functionalization of surfactant-wrapped graphene nanoribbons. Chem. Mater. 2009; 21: 5284-5291.
37. Zhang DD, Zu SZ, Han BH. Inorganic–organic hybrid porous materials based on graphite oxide sheets. Carbon. 2009; 47: 2993-3000.
38. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I. Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir. 2003; 19: 6050-6055.
39. Srinivas G, Burress JW, Ford J, Yildirim T. Porous graphene oxide frameworks: synthesis and gas sorption properties. J. Mater. Chem. 2011; 21: 11323-11329.
40. Burress J, Gadipelli S, Ford J, Simmons J, Zhou W, Yildirim T. Graphene oxide framework materials: theoretical predictions and experimental results. Angew. Chem. Int. Ed. 2010; 49: 8902-8904.
41. Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 2013; 47: 3715-3726.
42. Alonso MH, Abdala AA, McAllister MJ, Aksay IA, Prud’homme RK. Intercalation and stitching of graphite oxide with diaminoalkanes. Langmuir. 2007; 23: 10644-10649.
43. Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules. 2010; 43: 6515-6530.
44. Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC. High-nanofiller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly. Adv. Funct. Mater. 2010; 20: 3322-3329.
45. Fang M, Wang K, Lu H, Yang Y, Nutt SJ. Single-layer graphene nanosheets with controlled grafting of polymer chains. J. Mater. Chem. 2010; 20: 1982-1992.
46. Salavagione HJ, Gómez MA, Martínez G. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules. 2009; 42: 6331-6334.
47. Yu B, Wang X, Xing W, Yang H, Song L, Hu Y. UV-curable functionalized graphene oxide/polyurethane acrylate nanocomposite coatings with enhanced thermal stability and mechanical properties. Ind. Eng. Chem. Res. 2012; 51: 14629-14636.
48. Du R, Zhao J. Properties of poly (N,N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane. J. Membr. Sci. 2004; 239: 183–188.
49. Dai Y, Jian X, Zhang S, Guiver MD. Thin film composite (TFC) membranes with improved thermal stability from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK). J. Membr. Sci. 2002; 207: 189–197.
50. Yu S, Gao C. Water Treatment Technologies 2000; 26(2): 63–66.
51.Schaep J, Van der Bruggen B, Vandecasteele C, Wilms D. Influence of ion size and charge in nanofiltration. Sep. Purif. Technol. 1998; 14: 155–162.