An Electrochemical Sensor Based on Nickel Oxides Nanoparticle/ Graphene Composites for Electrochemical Detection of Epinephrine

Document Type: Research Paper

Authors

Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran

Abstract

The combination of graphene and nickel oxide nanoparticles yields nanostructured electrochemical sensor formed a novel kind of structurally uniform and electrocatalytic activity material. In cyclic voltammetry studies, in the presence of epinephrine, nickel oxide / graphene  composite modified electrode shows a significantly higher current response for epinephrine oxidation. Based on differential pulse voltammetry technique, the oxidation of epinephrine exhibited the dynamic range between 1.0–1800.0 μM and the detection limit was 0.42 μM. Finally, the resulting sensor was used to detect epinephrine and AC simultaneously in human serum samples.

Keywords


1. Bello A, Fabiane M, Dodoo-Arhin D, Ozoemena KI, Manyala N. Silver nanoparticles decorated on a three-dimensional graphene scaffold for electrochemical applications. J Phys Chem Solids. 2014;75(1):109–14.

2. Novoselov KS, Geim AK, Morozov S V, Jiang D, Zhang Y, Dubonos SV and, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.

3. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3(2):101–5.

4. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–7.

5. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008;146(9):351–5.

6. Jin Y, Jia M, Zhang M, Wen Q. Preparation of stable aqueous dispersion of graphene nanosheets and their electrochemical capacitive properties. Appl Surf Sci. 2013;264:787–93.

7. Behpour M, Meshki M, Masoum S. Study and electrochemical determination of tyrosine at graphene nanosheets composite film modified glassy carbon electrode. J Nanostruct. 2013;3(2):243–51.

8. Mazloum-Ardakani M, Khoshroo A, Hosseinzadeh L. Application of graphene to modified ionic liquid graphite composite and its enhanced electrochemical catalysis properties for levodopa oxidation. Sensors Actuators B Chem. 2014;204:282–8.

9. Mazloum-Ardakani M, Hosseinzadeh L, Taleat Z. Synthesis and electrocatalytic effect of Ag@Pt core–shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor. Biosens Bioelectron. 2015 Dec 15;74(0):30–6.

10. Wang R, Lang J, Zhang P, Lin Z, Yan X. Fast and Large Lithium Storage in 3D Porous VN Nanowires–Graphene Composite as a Superior Anode Toward High‐Performance Hybrid Supercapacitors. Adv Funct Mater. 2015;25(15):2270–8.

11. Liu M, Liu R, Chen W. Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron. 2013;45:206–12.

12. Song Y, He Z, Zhu H, Hou H, Wang L. Electrochemical and electrocatalytic properties of cobalt nanoparticles deposited on graphene modified glassy carbon electrode: Application to some amino acids detection. Electrochim Acta. 2011;58:757–63.

13. Rangheard C, de Julián Fernández C, Phua P-H, Hoorn J, Lefort L, de Vries JG. At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles. Dalt Trans. 2010;39(36):8464–71.

14. Li L, Wang A, Qiao B, Lin J, Huang Y, Wang X, et al. Origin of the high activity of Au/FeOx for low-temperature CO oxidation: Direct evidence for a redox mechanism. J Catal. 2013;299:90–100.

15. Zhu J, Kailasam K, Fischer A, Thomas A. Supported cobalt oxide nanoparticles as catalyst for aerobic oxidation of alcohols in liquid phase. ACS Catal. 2011;1(4):342–7.

16. Bhakta AK, Mascarenhas RJ, D’Souza OJ, Satpati AK, Detriche S, Mekhalif Z, et al. Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode as an electrochemical sensor for the simultaneous determination of uric acid in the presence of ascorbic acid, dopamine and l-tyrosine. Mater Sci Eng C. 2015 Dec 1;57:328–37.

17. Yuan B, Xu C, Liu L, Zhang Q, Ji S, Pi L, et al. Cu2O/NiOx/graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor. Electrochim Acta. 2013;104:78–83.

18. Mazloum-Ardakani M, Hosseinzadeh L, Khoshroo A, Naeimi H, Moradian M. Simultaneous Determination of Isoproterenol, Acetaminophen and Folic Acid Using a Novel Nanostructure-Based Electrochemical Sensor. Electroanalysis. 2014;26(2):275–84.

19. Mazloum-Ardakani M, Khoshroo A. High performance electrochemical sensor based on fullerene-functionalized carbon nanotubes/Ionic liquid: Determination of some catecholamines. Electrochem commun. 2014;42(0):9–12.

20. Mazloum-Ardakani M, Khoshroo A. Synthesis of TiO2 Nanoparticle and its Application to Graphite Composite Electrode for Hydroxylamine Oxidation. J Nanostruct. 2013;3:269–75.

21. Banks WA. The blood–brain barrier as a regulatory interface in the gut–brain axes. Physiol Behav. 2006;89(4):472–6.

22. Du J, Shen L, Lu J. Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material. Anal Chim Acta. 2003;489(2):183–9.

23. Wang A-J, Xu J-J, Zhang Q, Chen H-Y. The use of poly (dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis. Talanta. 2006;69(1):210–5.

24. Bulatov A V, Petrova A V, Vishnikin AB, Moskvin AL, Moskvin LN. Stepwise injection spectrophotometric determination of epinephrine. Talanta. 2012;96:62–7.

25. Wang L, Bai J, Huang P, Wang H, Zhang L, Zhao Y. Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine. Electrochem commun. 2006;8(6):1035–40.

26. Mazloum-Ardakani M, Ahmadi SH, Mahmoudabadi ZS, Khoshroo A, Heydar KT. Electrochemical and catalytic investigations of epinephrine, acetaminophen and folic acid at the surface of titanium dioxide nanoparticle-modified carbon paste electrode. Ionics. 2014;20(12):1757–65.

27. Marcano DC, Kosynkin D V, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806–14.

28. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, et al. Graphene‐based materials: synthesis, characterization, properties, and applications. Small. 2011;7(14):1876–902.

29. Lomeda JR, Doyle CD, Kosynkin D V, Hwang W-F, Tour JM. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc. 2008;130(48):16201–6.

30. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd ed. Wiley; 2000.

31. Galus Z, Reynolds GF, Marcinkiewicz S. Fundamentals of electrochemical analysis. Vol. 328. Ellis Horwood New York; 1976.