Preparation and Characterization of a Molybdenum(VI) Schiff Base Complex as Magnetic Nanocatalyst for Synthesis of 2-Amino-4H-benzo[h]chromenes

Document Type: Research Paper

Authors

1 Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran

2 Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran

Abstract

A new recoverable molybdenum nanocatalyst was prepared by immobilization  of a Schiff base ligand on the surface of silica coated magnetite nanoparticles (Fe3O4@SiO2) through condensation reaction between 3-aminopropyl triethoxysilane and 2-hydroxy1-naphthaldehyde and succeeding reaction with dioxomolybdenum(VI) acetylacetonate (MoO2(acac)2). The synthesized catalyst was characterized by inductively coupled plasma, thermogravimetric analysis, scanning electron microscopy, vibrating sample magnetometry, Energy-dispersive X-ray, Fourier transform infrared and X-raydiffraction spectroscopy. Catalytic performance of the synthesized nanocatalyst was investigated for the preparation of 2-amino-4H-benzo[h]chromenes. The compounds were prepared high yield through one-pot, three-component reaction of 1-naphthol, various of aldehydes and malonitrile in the presence of nanocatalyst, Fe3O4@SiO2@Mo-Schiff base, under solvent-free conditions. The benefits of this protocol are short reaction time, simple work-up procedure, high yields and use of the concept of green chemistry. The magnetic nanocatalyst could be separated easily from the reaction media using an external magnetic field and reused in subsequent catalytic runs without significant deterioration of its activity.

Keywords


1. Baig RN, Varma RS. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: aqueous hydration of nitriles to amides. Chem. Commun. 2012; 48(50): 6220- 6222.

2. Müller K, Skepper JN, Posfai M, Trivedi R, Howarth S, Corot C, Lancelot E, Thompson PW, Brown AP, Gillard JH. Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials. 2007 Mar 31;28(9):1629- 1642.

3. Jaffrezic-Renault N, Martelet C, Chevolot Y, Cloarec JP. Biosensors and bio-bar code assays based on biofunctionalized magnetic microbeads. Sensors. 2007; 7(4): 589-614.

4. Huang SH, Chen DH. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 2009; 163(1): 174- 179.

5. Sun Y, Duan L, Guo Z, DuanMu Y, Ma M, Xu L, Zhang Y, Gu N. An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application. J. Magn. Magn. Mater. 2005; 285(1): 65-70.

6. Xu ZP, Stevenson GS, Lu CQ, Lu GQ, Bartlett PF, Gray PP. Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J. Am. Chem. Soc. 2006; 128(1): 36-37.

7. Sen T, Sebastianelli A, Bruce IJ. Mesoporous silica-magnetite nanocomposite: fabrication and applications in magnetic bioseparations. J. Am. Chem. Soc. 2006; 128(22): 7130-7131.

8. Deng Y, Cai Y, Sun Z, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D. Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. J. Am. Chem. Soc. 2010; 132(24): 8466-8473.

9. Lin YS, Haynes CL. Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chem. Mater. 2009; 21(17): 3979-3986.

10. Kang Z, Liu Y, Lee ST. Small-sized silicon nanoparticles: new nanolights and nanocatalysts. Nanoscale. 2011; 3(3): 777-791.

11. Gawande MB, Monga Y, Zboril R, Sharma RK. Silica-decorated magnetic nanocomposites for catalytic applications. Coord. Chem. Rev. 2015; 288: 118-143.

12. Lu Y, Yin Y, Mayers BT, Xia Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2002; 2(3): 183-186.

13. Sotiriou GA, Hirt AM, Lozach PY, Teleki A, Krumeich F, Pratsinis SE. Hybrid, silica-coated, janus-like plasmonic-magnetic nanoparticles. Chem. Mater. 2011; 23(7): 1985-1992.

14. Corma A, Garcia H. Silica‐Bound Homogenous Catalysts as Recoverable and Reusable Catalysts in Organic Synthesis. Adv. Synth. Catal. 2006; 348(12‐13):1391-1412.

15. Shylesh S, Schweizer J, Demeshko S, Schünemann V, Ernst S, Thiel WR. Nanoparticle supported, magnetically recoverable oxodiperoxo molybdenum complexes: efficient catalysts for selective epoxidation reactions. Adv. Synth. Catal. 2009; 351(11‐12):1789-1795.

16. Esmaeilpour M, Sardarian AR, Javidi J. Schiff base complex of metal ions supported on superparamagnetic Fe3O4@ SiO2 nanoparticles: An efficient, selective and recyclable catalyst for synthesis of 1, 1-diacetates from aldehydes under solvent-free conditions. Appl. Catal., A 2012; 445: 359-367.

17. Khan FA, Süss‐Fink G. Superparamagnetic Core‐Shell‐Type Fe3O4/Ru Nanoparticles as Catalysts for the Selective Hydrogenation of an Unconstrained α, β‐Unsaturated Ketone. Eur. J. Inorg. Chem. 2012; 2012(4): 727-732.

18. Sun J, Yu G, Liu L, Li Z, Kan Q, Huo Q, Guan J. Core–shell structured Fe3O4@SiO2 supported cobalt (ii) or copper (ii) acetylacetonate complexes: magnetically recoverable nanocatalysts for aerobic epoxidation of styrene. Catal. Sci. Technol. 2014; 4(5): 1246-1252.

19. Shylesh S, Schünemann V, Thiel WR. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2010; 49(20): 3428-3459.

20. Rostami A, Tahmasbi B, Abedi F, Shokri Z. Magnetic nanoparticle immobilized N-propylsulfamic acid: The chemoselective, efficient, green and reusable nanocatalyst for oxidation of sulfides to sulfoxides using H2O2 under solvent-free conditions. J. Mol. Catal. A: Chem. 2013; 378: 200-205.

21. Sadeghzadeh SM, Daneshfar F, Malekzadeh M. Manganese (III) Salen Complex Immobilized on Fe3O4 Magnetic Nanoparticles: The Efficient, Green and Reusable Nanocatalyst. Chin. J. Chem. 2014; 32(4): 349-355.

22. Abbasi Z, Behzad M, Ghaffari A, Rudbari HA, Bruno G. Mononuclear and dinuclear salen type copper (II) Schiff base complexes: Synthesis, characterization, crystal structures and catalytic epoxidation of cyclooctene. Inorg. Chim. Acta 2014; 414: 78-84.

23. Ghorbani-Choghamarani A, Darvishnejad Z, Norouzi M. Cu (II)–Schiff base complex-functionalized magnetic Fe3O4 nanoparticles: a heterogeneous catalyst for various oxidation reactions. Appl. Organomet. Chem. 2015; 29(3): 170-175.

24. Sheikhshoaie I, Rezaeifard A, Monadi N, Kaafi S. A novel tridentate Schiff base dioxo-molybdenum (VI) complex: Synthesis, crystal structure and catalytic performance in green oxidation of sulfides by urea hydrogen peroxide. Polyhedron. 2009; 28(4): 733-738.

25. Bagherzadeh M, Haghdoost MM, Ghanbarpour A, Amini M, Khavasi HR, Payab E, Ellern A, Woo LK. New molybdenum (VI) catalyst for the epoxidation of alkenes and oxidation of sulfides: An experimental and theoretical study. Inorg. Chim. Acta. 2014; 411:61-66.

26. Masteri-Farahani M, Tayyebi N. A new magnetically recoverable nanocatalyst for epoxidation of olefins. J. Mol. Catal. A: Chem. 2011; 348(1):83-87.

27. Masteri-Farahani M, Kashef Z. Synthesis and characterization of new magnetically recoverable molybdenum nanocatalyst for epoxidation of olefins. J. Magn. Magn. Mater. 2012; 324(7):1431-1434.

28. Moafi L, Ahadi S, Bazgir A. New HA 14-1 analogues: synthesis of 2-amino-4-cyano-4H-chromenes. Tetrahedron Lett. 2010; 51(48):6270-6274.

29. Dong Z, Liu X, Feng J, Wang M, Lin L, Feng X. Efficient Asymmetric Synthesis of 4H‐Chromene Derivatives through a Tandem Michael Addition–Cyclization Reaction Catalyzed by a Salen–Cobalt (II) Complex. Eur. J. Org. Chem. 2011;2011(1):137-142.

30. Symeonidis T, Chamilos M, Hadjipavlou-Litina DJ, Kallitsakis M, Litinas KE. Synthesis of hydroxycoumarins and hydroxybenzo [f]-or [h] coumarins as lipid peroxidation inhibitors. Bioorg. Med. Chem. Lett. 2009; 19(4):1139-1142.

31. Alvey L, Prado S, Huteau V, Saint-Joanis B, Michel S, Koch M, Cole ST, Tillequin F, Janin YL. A new synthetic access to furo [3, 2-f] chromene analogues of an antimycobacterial. Bioorg. Med. Chem. 2008;16(17):8264-8272.

32. Yimdjo MC, Azebaze AG, Nkengfack AE, Meyer AM, Bodo B, Fomum ZT. Antimicrobial and cytotoxic agents from Calophyllum inophyllum. Phytochemistry. 2004;65(20):2789- 2795.

33. Xu ZQ, Pupek K, Suling WJ, Enache L, Flavin MT. Pyranocoumarin, a novel anti-TB pharmacophore: Synthesis and biological evaluation against Mycobacterium tuberculosis. Bioorg. Med. Chem. 2006; 14(13):4610-4526.

34. Bonsignore L, Loy G, Secci D, Calignano A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem. 1993;28(6): 517-520.

35. Lakshmi V, Pandey K, Kapil A, Singh N, Samant M, Dube A. In vitro and in vivo leishmanicidal activity of Dysoxylum binectariferum and its fractions against Leishmania donovani. Phytomedicine. 2007 ;14(1):36-42.

36. Kumar D, Reddy VB, Sharad S, Dube U, Kapur S. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5, 6, 7, 8-tetrahydro-4H-chromenes. Eur. J. Med. Chem. 2009;44(9):3805-3809.

37. Hafez EA, Elnagdi MH, Elagamey AG, El-Taweel FM. Nitriles in heterocyclic synthesis: novel synsthesis of benzo [c]-coumarin and of benzo [c] pyrano [3, 2-c] quinoline derivatives. Heterocycles. 1987;26(4):903-907.

38. Ellis GP, editor. The chemistry of heterocyclic compounds, chromenes, chromanones, and chromones. John Wiley & Sons; 2009.

39. Khurana JM, Nand B, Saluja P. DBU: a highly efficient catalyst for one-pot synthesis of substituted 3, 4-dihydropyrano [3, 2-c] chromenes, dihydropyrano [4, 3-b] pyranes, 2-amino-4H-benzo [h] chromenes and 2-amino-4H benzo [g] chromenes in aqueous medium. Tetrahedron. 2010;66(30):5637-5641.

40. Sheldon RA. Selective catalytic synthesis of fine chemicals: opportunities and trends. J. Mol. Catal. A: Chem. 1996;107(1):75-83.

41. Patra A, Mahapatra T. Aliquat 336 catalysed three-component condensation in an aqueous media: A synthesis of 1H-and 4H-benzochromenes. J. Chem. Res. 2008;2008(7):405-408.

42. Ren YM, Cai C. Convenient and efficient method for synthesis of substituted 2-amino-2-chromenes using catalytic amount of iodine and K2CO3 in aqueous medium. Catal. Commun. 2008;9(6):1017-1020.

43. Bloxham J, Dell CP, Smith CW. Preparation of some new benzylidenemalononitriles by an SNAr reaction: application to naphtho [1, 2-b] pyran synthesis. Heterocycles. 1994;38(2):399-408.

44. Wang XS, Shi DQ, Yu HZ, Wang GF, Tu SJ. Synthesis of 2‐Aminochromene Derivatives Catalyzed by KF/Al2O3. Synth. Commun. 2004;34(3):509-514.

45. Abdolmohammadi S, Balalaie S. Novel and efficient catalysts for the one-pot synthesis of 3, 4-dihydropyrano [c] chromene derivatives in aqueous media. Tetrahedron Lett. 2007;48(18):3299-3303.

46. Heravi MM, Sadjadi S, Haj NM, Oskooie HA, Bamoharram FF. Role of various heteropolyacids in the reaction of 4-hydroxycoumarin, aldehydes and ethylcyanoacetate. Catal. Commun. 2009;10(13):1643-1646.

47. Zhang FR, Huang W, Chen SM, Sun LD, Liu H, Li Y, Cui Y, Yan XX, Yang HT, Yang RD, Chu TS. Genomewide association study of leprosy. N. Engl. J. Med. 2009;361(27):2609-2618.

48. Shaabani A, Ghadari R, Ghasemi S, Pedarpour M, Rezayan AH, Sarvary A, Ng SW. Novel one-pot three-and pseudo-five-component reactions: synthesis of functionalized benzo [g]-and dihydropyrano [2, 3-g] chromene derivatives. J. Comb. Chem. 2009;11(6):956-959.

49. Chen GJ, McDonald JW, Newton WE. Synthesis of molybdenum (IV) and molybdenum (V) complexes using oxo abstraction by phosphines. Mechanistic implications. Inorg. Chem. 1976;15(11):2612-2615.

50. Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968;26(1):62-69.

51. Liu X, Ma Z, Xing J, Liu H. Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater. 2004;270(1):1-6.

52. Wang J, Zhang K, Peng Z, Chen Q. Magnetic properties improvement in Fe3O4 nanoparticles grown under magnetic fields. J. Cryst. Growth. 2004;266(4):500-504.