Diethylene Glycol-Mediated Synthesis of Nano-Sized Ceria (CeO2 )Catalyst

Document Type: Research Paper


Department of Physics, Collage of Science, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran



Nano-crystalline particles of CeO2 have been synthesized by a low temperature chemical precipitation method. The precursor materials used in this research were Ce(NO3)3.6H2O, NaOH and diethylene glycol as surfactant. X-ray powder diffraction results showed that face centered cubic CeO2 nanoparticles with crystalline size in nanometer scale were formed. Scanning electron microscopy measurement showed that by increasing the calcinations temperature the crystallite size decreases. The particle size of CeO2 was around 20 nm as estimated by X-ray powder diffraction technique and direct high-resolution transmission electron microscopy observation. High-resolution transmission electron microscopy studies showed the size of CeO2 particles increase from 10-90 nm by increasing the ratio of diethylene glycol surfactant. The sharp peaks in Fourier transform infrared spectrum determined the purity of CeO2 nanoparticles and absorbance peak of ultraviolet–visible spectroscopy spectrum showed the small bandgap energy of 3.26 ev.


[1] Murray EP, Tsai T and Barnett SA. A direct-methane fuel cell with a ceria-based anode. Nature. 1999; 400(67450: 649-651

[2] Li RX, Yabe S, Yamashita M, Momose S, Yoshida S, Yin S. Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process. Solid State Ionics. 2002; 151(1-4): 235-241.

[3] Sanchez MG, Gazquez JL. Oxygen vacancy model in strong metal-support interaction. J. Catalysis. 1987; 104(1): 120-135

[4] Jiang M, Wood NO, Komanduri R. On chemo-mechanical polishing (CMP) of silicon nitride (Si3N4) workmaterial with various abrasives. Wear. 1989; 120(4): 59-71.

[5] Izu N, Shin W, Murayarna N, Kanzaki S. Resistive oxygen gas sensors based on CeO2 fine powder prepared using mist pyrolysis. Sensors Actuators B: Chem. 2002; 87(1): 95-98.

[6] Yabe S, Sato T. Cerium oxide for sunscreen cosmetics. J. Solid State Chem. 2003; 171(1-2): 7-11.

[7] Chen PL, Chen IW. Reactive Cerium (IV) Oxide Powders by the Homogeneous Precipitation Method. J. Am. Ceram. Soc. 1993; 76(6): 1577-1583.

[8] Djuricic B, Pickering S. Nanostructured cerium oxide: preparation and properties of weakly-agglomerated powders. J. Europ. Ceram. Soc. 1999; 19(11): 1925-1934.

[9] Zhou XD, Huebner W, Anderson HU. Room-temperature homogeneous nucleation synthesis and thermal stability of nanometer single crystal CeO2. App. Phys. Lett. 2002; 80(20): 3814-3816

[10] Wu NC, Shi EW, Zheng YQ, Li WJ. Effect of pH of Medium on Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders. J. Am. Ceram. Soc. 2002; 85(10): 2462-2468.

[11] Hirano M, Kato E. The hydrothermal synthesis of ultrafine cerium(iv) oxide powders. J. Mater. Sci. Lett. 1996; 15(3): 1249-1250.

[12] Li LP, Lin XM, Li GS, Inomata H. Solid solubility and transport properties of Ce1"xNdxO2"ن nanocrystalline solid solutions by a sol-gel route. J. Mater. Res. 2001; 16(11): 3207-3213.

[13] Masui T, Fujiwara K, Machida KI, Adachi GY, Sakata T, Mori H. Characterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles. Chem. Mater. 1997; 9(10): 2197-2204

[14] Drobot D, Chub A, Voronov V, Fedorov P, Ivanov V, Polezhaeva O. Preparation of ceria nanoparticles, Inorg. Mater. 2008; 44(8): 853-855.

[15] Zhou XD, Huebner W, Anderson HU. Room-temperature homogeneous nucleation synthesis and thermal stability of nanometer single crystal CeO2. Appl. Phys. Lett. 2002; 80(20): 3814-3818.

[16] Gopi KR, Nagarajan R. Advances in nano-alumina ceramic particle fabrication using sono-fragmentation, IEEE Trans. Nanotech. 2008; 7(5): 532-537.

[17] Cho MY, Roh KC, Park SM, Choi HJ, Lee JW. Control of particle size and shape of precursors for ceria using ammonium carbonate as a precipitant. Mater Lett. 2010; 64(3): 323-328.

[18] Foger K, Hoang M, Turney TW. Formation and thermal decomposition of rare-earth carbonates. J Mater Sci. 1992; 27(1): 77-83.

[19] Zhang Z, Kleinstreuer C, Donohue JF, Kim CS, Comparison of micro- and nano-size particledepositions in a human upper airway model. J Aerosol Sci. 2005; 36(12): 211-233.

[20] Devitt NT, Baun WL. Infrared absorption study of metal oxides in the low frequency region (700-240 cm”1). Spectrochimica Acta. 1964; 20(5): 799-808.

[21] Jobbagy M, Marin F, Schonbrod B, Baronetti G, Laborde M. Synthesis of Copper-Promoted CeO2 Catalysts. Chem. Mater. 2006; 18(7): 1945-1950.

[22] Tao Y, Wang H, Xia Y, Zhang G, Wu H, Tao G. Preparation of shape-controlled CeO2 nanocrystals via microwave-assisted method. Mater. Chem. Phys. 2010; 124(1): 541-546.