Microwave Synthesis of Fe2O3 Nanoparticles and Its Catalyst Investigation in One-pot Synthesis of Naphthoxazinone Derivatives

Document Type: Research Paper

Authors

Department of Chemistry, Zahedan Branch, Islamic Azad University, P.O. Box 98135-978, Zahedan, Iran

10.7508/jns.2015.04.009

Abstract

In this work firstly Fe2O3 nanoparticles were synthesized via a simple chemical method. Properties of the product were examined by X-ray diffraction pattern (XRD), Scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Vibrating sample magnetometer (VSM) shows nanoparticles exhibit ferromagnetic behavior. To continue some of the 2-naphthol condensed 1,3-oxazinone derivatives employing one-pot condensation reaction in the presence of Fe2O3 nanoparticles as an acid catalyst were described. The present methodology offers several advantages, viz. high yields, clean reaction, short reaction times, recyclability of the catalyst and simple workup procedure.

Keywords


[1] D. Dallinger, A. Stadler, C.O. Kappe, Pure Appl. Chem. 76 (2004) 1017-1022

[2] Dax S. L., McNally J. J., and Youngman M. A. Curr. Med. Chem. (1999) 6, 255-270

[3] Domling A., and Ugi I. (2000) Angew. Chem. Int. Ed. 39, 3168-3210

[4] Waxman, L.; Darke, P. L. Antiviral Chem. Chemother. 2000, 11

[5] (a) Kalluraya, B.; Sreenivasa, S. Farmaco 1998, 53, 399. J. Org. Chem. 61 (1996) 3398-3405

[6] Iwahashi, M.; Kobayashi, K.; Nambu, F.  Int. Patent Appl. WO 2003078409 A1, (2003)

[7] Vianello, P.; Bandiera, T. U.S. Patent Appl. US 20030073688 A1, (2003)

[8] Anderluh, M.; Cesar, J.; Stefanic, P.; Kikelj, D.; Janes, D.; Murn, J. Nadrah, K.; Tominc, M.; Addicks, E.; Giannis, A.; Stegnar, M.; Dolenc, M. S. Eur. J. Med. Chem. 40 (2005) 25-33

[9] Kajino, M.; Shibouta, Y.; Nishikawa, K.; Meguro, K. Chem. Pharm. Bull. 39 (1991) 2896-2903.

[10] Gellibert, F. J.; Payne, A. H.  Int. Patent Appl. WO 2003097639 A1, (2003)

[11] Nicolaiders, D. N.; Gautam, D. R.; Litinas, K. E.; Hadjipavlon-Litina, D. J.; Kontogiorgis, C. A. J. Heterocycl. Chem. 41 (2004) 605-612

[12] Bethiel, R. S.; Ludeboer, M. U.S. Patent Appl. US 20040097504 A1, (2004)

[13] Kumar, A.; Saxena, A.; Dewan, M.; De, A.; Mozumdar, S. Tetrahedron Lett. 52 (2011) 4835-4842

[14] Jiang, C.; Geng, X.; Zhang, Z.; Xu, H.; Wang, C. J. Chem. Res. 34 (2010) 19-26

[15] Ahangar, H. A.; Mahdavinia, G. H.; Marjani, K.; Hafezian, A. J. Iran. Chem. Soc. 7 (2010) 770-778

[16] Chaskar, A.; Vyavhare, V.; Padalkar, V.; Phatangare, K.; Deokar, H. J. Serb. Chem. Soc. 76 (2011) 21-28

[17] Kantevari, S.; Vuppalapati, S. V. N.; Bantu, R.; Nagarapu, L.  J. Heterocycl. Chem. 47 (2010) 313-321

[18] Kumar A., Singh P., Saxena A., Chandra R., Mozumdar S., Catalysis Communications , 10 (2008) 17-25

[19] Nemati F., Beyzai A.,  J. Chem., Article  ID 365281, (2013), 4 pages, http://dx.doi.org/10.1155/2013/365281.

[20] Kumar A., GuptaK. M., Kumar M., RSC Adv., 2  (2012) 7371-7379

[21] G. Nabiyouni, D. Ghanbari, S. Karimzadeh, B. Samani-Ghalehtaki, J Nano Struc. 4 (2014) 467-474

[22] J. Saffari, N. Mir, D. Ghanbari, K. Khandan-Barani, A. Hassanabadi, M R Hosseini-Tabatabaei (in press 2015)  DOI 10.1007/s10854-015-3622-y

[23] H.R. Momenian, M. Salavati-Niasari, D. Ghanbari, B. Pedram, F. Mozaffar, S. Gholamrezaei, J Nano Struc. 4 (2014) 99-104

[24]. D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Koch, J Indus Eng Chem. 20 (2014) 3970-3974

[25] S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, J Indus Eng Chem. 20 (2014) 3335-3341

[26] P. Jamshidi, M. Salavati-Niasari, D. Ghanbari, H.R. Shams, J Clust Sci. 24 (2013) 1151-1162

[27] S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, J Indus Eng Chem. 20 (2014) 4000-4007

[28] A. Esmaeili-Bafghi-Karimabad, D. Ghanbari, M. Salavati-Niasari, L. Nejati-Moghadam, S. Gholamrezaei, J. Mater. Sci. Mater. Electron. 26, (2015) 6970-6977