Ultrasound Assisted Synthesis and Characterization of Mn Doped CdS Nanocrystalline Zinc-Blendes

Document Type: Research Paper

Authors

1 Department of physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, 77188-97111 Iran.

2 Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, 77188-97111 Iran.

10.7508/jns.2015.04.008

Abstract

Cd1-xMnxS (x = 0, 0.1, 0.2) nanoparticles, prepared by co-precipitation method under ultrasonic irradiation, were studied by means of X-ray diffraction, scanning electron microscopy, FTIR and UV-Vis  spectroscopy measurements. The average particle size of nanoparticles from the scanning electron microscopy image is about 20-30 nm. Results show that partial substitution of Cd by Mn leads to a reduction in lattice parameters and enhancement of band gap energy. This is attributed to the nanometric grain size and quantum confinement effects. The particle size is calculated to be around 2 nm that is almost in agreement with the crystallite size estimated from the XRD result.

Keywords


[1] A. P. Alivisatos, Science 271 (1996) 933-937.

[2] J. R. Heath, Ed. Acc. Chem. Res. 32(1999) 389-396.

[3] Q. Wang, G. Xu, G. Han, J. Solid State Chem. 178 (2005) 2680-2685.

[4] H. M. Fan, X. F. Fan, Z. H. Ni, Z. X. Shen, Y. P. Feng, B. S. Zou, J Phys Chem C 112 (2008) 1865-1870.

[5] Q. Nie, Q. Yuan, W. Chen, J. Cryst. Growth 265 (2004) 420-424.

[6] X. Ma, F. Xu, Z. Zhang, Mater. Res. Bull. 40 (2005 ) 2180-2188.

[7] Y. Wang, C.Y. To, D.H.L. Ng, Mater. Lett. 60 (2006) 1151-1155.

[8] R. Romano, O. L. Alves, Mater. Res. Bull. 41 (2006) 376-386.

[9] Y. Yang, H. Chen, X. Bao, J. Cryst. Growth. 252 (2003) 251- 256.

[10] A. Kassis, M. Saad, Solar Energy Materials and Solar Cells 80 (2003) 491-499.

[11] C. Yang, X. Zhou, L. Wang, X. Tian, Y. Wang, Z. Pi, J.Mater.Sci. 44 (2009) 3015-3019.

[12] P.Y. Yu, M. Cardona, Fundamentals of semiconductors, Springer-Verlag (1983).

[13] S.V. Gaponenko, Optical properties of semiconductor nanocrystals, Cambridge University Press (2005).

[14] M.C. Schlamp, X. Peng, A.P. Alivisatos, J. Appl. Phys. 82 (1997) 5837-5842.

[15] Y. Shen, Y. Lee, Nanotechnology 19 (2008) 045602- 045608.

[16] S. Biswas, M.F. Hossain, T. Takahashi, Thin Solid Films 517 (2008) 1284-1288.

[17] T. Suzuki, T. Yagi, S. Akimoto, T. Kowamura, S. Tayoda, S. Endo, J. Appl. Phys. 54 (1983) 748-760.

[18] A.N. Mariano, E.P. Warekois,Science 142 (1963) 672-673.

[19] S. Prabahar, N. Suryanarayanan, D. Kathirvel, Chalcogenide Letters 6 (2009) 577-581.

[20] M.J. Pawar, S.S. Chaure, Chalcogenide Letters 6 (2009) 689-693.

[21] A. Ishizumi, K. Matsuda, T. Saiki, C.W. White, Y. Kanemitsu, Appl. Phys. Lett. 87 (2009) 1331040- 1331043.

[22] A. Nag, S. Sapra, C. Nagamani, A. Sharma, N. Pradhan, S.V. Bhat,  D.D. Sarma, Chem. Mater. 19 (2007) 3252-3259.

[23] A. Nag, S. Sapra, S.S. Gupta, A. Prakash, A. Ghangrekar, N. Periasamy, D.D. Sarma, Bull. Mater. Sci. 31 (2008) 561-568.

[24] C.W. Na, D.S. Han, D.S. Kim, Y.J. Kang, J.Y. Lee, J. Park, D.K. Oh, K.S. Kim, D. Kim, J. Phys. Chem. B 110 (2006) 6699-6704.

[25] D.S. Kim, Y.J. Cho, J. Park, J. Yoon, Y. Jo, M.H. Jung, J. Phys. Chem. C 111 (2007) 10861-10868.

[26] J. Hasanzadeh, A. Taherkhani, M. Ghorbani, Chinese Journal of Physics 51 (2013) 540-550.

[27] K. Nakamoto,Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5 ed. New York,  John Wiley (1997).

[28] B.R. Singh, S. Dwivedi, A.A. Al-Khedhairy, J. Musarrat, Colloids and Surfaces B: Biointerfaces (2011) 207–213. 

[29] B. Srinivasa Rao, B. Rajesh Kumar, V. Rajagopal Reddy, T. Subba Rao, Chalcogenide Letters 8 (2011) 177-185.

[30] P. Kumar, H.K. Mali, A. Ghosh, R. Thanavel, K. Asokan, Appl. Phys. Lett. 102 (2013) 221903- 221908.

[31] Z.H. Yuan, W. You, J.H. Jia, L.d. Zhang, Chin. Phys. Lett. 15 (1998) 535-536.

[32] J.P. Borah, K.C. Sarma, ACTA PHYSICA POLONICA A 114 (2008) 713-719.