Experimentally designed optimized conditions for catalytic performance of nanostructured RuO2 in Biginelli reaction

Document Type: Research Paper

Authors

Department of chemistry, Semnan University, Semnan 35351-19111, Iran

10.7508/jns.2015.04.005

Abstract

Nanostructured RuO2 powders were synthesized via a hydrothermal method at 180 °C for 12 h using 1 and 2 M NaOH aqueous solutions. The structure of the obtained nanomaterials was investigated by powder X-ray diffraction (PXRD) technique. The morphology the obtained materials were studied by field emission scanning electron microscope (FESEM). The technique showed that with changing the reaction rout, the homogeneity of the size and morphology of the synthesized nanomaterials were changed. It was found that the morphology of the obtained materials were spherical particles using 2 M NaOH aqueous solution. Catalytic performance of the synthesized nanomaterials was investigated in Biginelli reactions for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) using Benzaldehyde derivatives, urea and ethylacetoacetate as raw materials. Experimental design method was used to obtain optimized reaction conditions. It was found that the optimized conditions were 0.028 g of catalyst, 110 °C reaction temperature and 66 min reaction time.

Keywords


[1] K. H. Chang, C. C. Hu, Electrochem Solid-State   Lett. 7 (2004) 466-469.

[2] S. Trasatti, Electrochem Acta. 36 (1991) 225-241.

[3] J. Lipkowski, P. N. Ross, The electrochemical novel materials, VCH Publishers, 1994.

[4] B. O. Park, C. D. Lokhande, H. S. Park, K. Jung, D.; O. S. Joo, J. Power Sources. 134 (2004) 148-152.   

[5] J. P. Zheng, P. J. Cygan, T. R. Jow, J Electrochem Soc. 142 (1995) 2699-2703.

[6] W. Deng, X. Ji, Q. Chen, C. E. Banks, RSC Adv. 1 (2011) 1171-1178.

[7] A. Burke, Ultracapacitors. 91 (2000) 37-50.

[8] S. Pizzini, G. Buzzanca, C. Mari, L. Rossi, S. Torchio, Mater Res Bull. 7 (1972) 449.

[9] V. D. Patake, C. D. Lokhande, Appl Surf Sci. 254 (2008) 2820-2824.

[10] S. H. Lee, P. Liu, H. M. Cheong, C. E. Tracy, S. K. Deb, Solid State Ionics. 165 (2003) 217-221.

[11] W. Dmowski, T. Egami, K. E. Swider-Lyons, C. T. Love, D. R. Rolison, J Phys Chem B. 106 (2002) 12677-12683.

[12] I. H. Kim, K. B. Kim, J. Electrochem Soc. 153 (2006) A383-A389.

[13] L. Krusin‐Elbaum, M. Wittmer, J Electrochem Soc. 135 (1988) 2610-2614.

[14] K. Kouachi, G. Lafaye, S. Pronier, L. Bennini, S. Menad, J. Mol Catal A Chem. 395 (2014) 210-216.

[15] F. Tamaddon, S. Moradi, J. Mol Catal A Chem. 370 (2013) 117-122.

[16] H. R. Memarain, Ranjbar, M. J Mol Catal A Chem. 356 (2012) 46-52.

[17] D. Shobha, M. A. Chari, A. Mano, S. T. Selvan, K. Mukkanti, A. Vinu, Tetrahedron. 65 (2009) 10608-10611.

[18] K. Singh, K. Singh, Tetrahedron Lett. 50 (2009) 2219-2221.

[19] G. Sabitha, K. B. Reddy, J. S. Yadav, D. Shailaja, K. S. Sivudu, Tetrahedron Lett. 46 (2005) 8221-8224.

[20] G. E. P. Box, N. R. Draper, Empirical model-building and response surfaces. Wiley,1987.

[21] R. H. Myers, D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, third ed., Willey, 2002.

[22] H. Valizadeh, A. Shockravi, Heteroat Chem. 20 (2009) 284-288.

[23] J. H. Xu, T. Jarlborg; A. J. Freeman, J Phys Rev. 40 (1989) 7939.

[24] J. Haines, J. M. Leger, Phys Rev B. 55 (1997) 11144.

[25] G. E. Box, K. B. Wilson, J R Stat Soc Series B. 13 (1951) 1-45.

[26]  R. H. Myers, D. C. Montgomery, C. M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments, John Wiley and Sons. 2009.

[27] R. H. Myers, D. C. Montgomery, G. G. Vining, C. M. Borror, S. M. Kowalski, J Qual Technol. 36 (2004) 53.

[28] R. Tauler, B. Walczak, S. D. Brown, Comprehensive chemometrics: chemical and biochemical data analysis. Elsevier, 2009.

[29] V. C. Guguloth, G. Raju, M. Basude, S. Battu, Int J Chem Anal Sci. 5 (2014) 86-92.

[30] A. Wang, X. Liu, Z. Su, H. Jing, J Catal Sci Technol. 4 (2014) 71-80.

[31] S. L. Jain, V. V. D. N. Prasad, B. Sain, Catal Commun. 9 (2008) 499-503.

[32] K. Pourshamsian, Int J Nano Dimension.  6 (2015) 99.

[33] S. Khademinia, M. Behzad, H. S. Jahromi, RSC Adv., 5 (2015) 24313.

[34] S. Khademinia, M. Behzad, A Alemi, M. Dolatyari, S. M. Sajjadi, RSC Adv. 5 (2015) 71109.