Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

Document Type: Research Paper

Authors

1 Faculty of Chemistry, Kharazmi University, Tehran, Iran

2 Faculty of Chemistry, Islamic Azad University, Ardabil branch, Ardabil, Iran

10.7508/jns.2015.04.003

Abstract

In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs) with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs). Then, Schiff base condensation  of AmpSCMNPs with acetyl  ferrocene resulted in the preparation of acferro-SCMNPs hybrid nanomaterial. Characterization of the prepared nanomaterial was performed with different physicochemical methods such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). VSM analysis showed superparamagnetic properties of the prepared nanomaterial and TEM and SEM analyses indicated the relatively spherical nanoparticles with 15 nm average size.

Keywords


[1] G. Cerveau, R.J.P. Corriu, E. Framery, Chem. Mater. 13 (2001) 3373-3388.

[2] C. Sanchez, B. Julian, P. Belleville, M. Popall, J. Mater. Chem. 15 (2005) 3559–3592.

[3] D. Eder, Chem. Rev. 110 (2010) 1348–1385.

[4] G. Kickelbick, Hybrid Materials. Synthesis, Characterization, and Applications, ed. G. Kickelbick, Wiley-VCH, Weinheim, (2007).

[5] F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed. 45 (2006) 3216–3251. 

[6] M.F. Ashby, Y.J.M. Brechet, Acta Mater. 51 (2003) 5801–5821.

[7] M.H. Valkenberg, W.F. Holderich, Catal. Rev. 44 (2002) 321–374.

[8] J.J.E. Moreau, M.W.C. Man, Coord. Chem. Rev. 178-180 (1998) 1073-1084.

[9] A.P. Wight, M.E .Davis, Chem. Rev. 102 (2002) 3589-3614.

[10] A.P. Herrera, C. Barrera, C. Rinaldi, J. Mater. Chem. 18 (2008) 3650-3654. 

[11] Y. Sun, L. Duan, Z. Guo, Y. DuanMu, M. Ma, L. Xu, N. Gu, J. Magn. Magn.Mater. 285 (2005) 65-70.

[12] I.J. Bruce, J. Taylor, M. Todd. M.J. Davies, E. Borioni, J. Magn. Magn.Mater. 284 (2004) 145-160.

[13] A. Hu, G.T. Yee, W. Lin, J. Am. Chem. Soc. 127 (2005) 12486-12487.

[14] Z. Wang, P. Xiao, B. Shen, N. He, Colloid Surf. A, Phys. 276(2006) 116-121.

[15] S. Luo, X. Zheng, J.P. Cheng, Chem. Commun. (2008) 5719-5721.

[16] B. Panella, A. Vargas, A. Baiker, J. Catal. 261 (2009) 88- 93.

[17] M. Masteri-Farahani, N. Tayyebi, J. Mol. Catal. A: Chemical 348 (2011) 83-87.

[18] M. Masteri-Farahani, Z. Kashef, J. Magn. Magn.Mater. 324 (2012) 1431-1434.

[19] M. Masteri-Farahani, R. Kamrani, J. Nanostructures, 3 (2013) 137-143.

[20] M. Mohammadikish, M. Masteri-Farahani, S. Mahdavi, J. Magn. Magn. Mater. 354 (2014) 317–323.

[21] L. Li, J. Shi, J. Yan, X. Zhao, H. Chen, Appl. Catal. A:Gen. 263 (2004) 213–217.

[22] M. Trejda, M. Ziolek, Catal. Today 101 (2005) 109–116.

[23] E. Kwon, T.G. Lee, Appl. Surf. Sci. 254 (2008) 4732–4737.

[24] S. O’Brien, J.M. Keates, S. Barlow, M.J. Drewitt, B.R. Payne, D. O’Hare, Chem. Mater. 10 (1998) 4088 4099.

[25] F. Silveira, M.C.M. Alves, F.C. Stedile, S.B.Pergher, A. Rigacci, J.H.Z. dos Santos, J. Mol. Catal. A:Chem. 298 (2009) 40–50.

[26] H. Rahiala, I. Beurroies, T. Eklund, K. Hakala, R. Gougeon, P. Trens, J.B. Rosenholm, J. Catal.188 (1999) 14–23.

[27] C. Kamonsatikul, T. Khamnaen, P. Phiriyawirut, S. Charoenchaidet, E. Somsook, Catal. Commun. 26 (2012) 1–5.

[28] Z. Wang, P. Xiao, B. Shen, N. He, Colloid. Surface A: Physicochem. Eng. Aspects 276 (2006) 116-121.

[29] M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, N. Gu, Colloid. Surface A: Physicochem. Eng. Aspects 212 (2003) 219-226.