Synthesis, Characterization and Transport Properties of Novel Ion-exchange Nanocomposite Membrane Containing In-situ Formed ZnO Nanoparticles

Document Type: Research Paper

Authors

1 School of Chemistry, College of Science, University of Tehran, Tehran, Iran

2 Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran

10.7508/jns.2015.04.001

Abstract

A  new  type  of  cation-exchange  nanocomposite  membranes  was prepared  by  in-situ  formation  of  ZnO  nanoparticles  in  a  blend containing  sulfonated  poly  (2,6-dimethyl-1,4-phenylene  oxide)  and sulfonated polyvinylchloride  via  a  simple  one-step  chemical method.  As-synthesized  nanocomposite  membranes were characterized  using  Fourier  transform  infrared  spectroscopy, scanning  electron  microscopy  and X-ray  diffraction.  The  SEM images  showed  that  ZnO  nanoparticles  were  uniformly  dispersed throughout the polymeric matrices. The effect of additive loading on physicochemical and electrochemical properties of prepared cation-exchange  nanocomposite  membranes  was  studied.  Various characterizations revealed that  the  incorporation  of  different amounts  of  ZnO  nanoparticles  into  the  basic  membrane  structure had a significant influence on the membrane performance and could improve the electrochemical properties.

Keywords


[1]. X. Zuo, S. Yu, X. Xu, J. Xu, R. Bao, X. Yan, J. Membr. Sci. 340 (2009) 206–213.

[2]. L. J. Banasiak, B. Van der Bruggen, A. I. Schafer, Chem. Eng. J. 166 (2011) 233–239.

[3]. F. Karimi, S. N. Ashrafizadeh, F. Mohammadi, Chem. Eng. J. 183 (2012) 402–407.

[4]. S. H. Moon, S. H. Yun, Curr. Opin. Chem. Eng. 4 (2014) 25–31.

[5]. M. C. Martí-Calatayud, D. C. Buzzi, M. García-Gabaldón, A. M. Bernardes, J. A. S. Tenório, V. Pérez-Herranz, J. Membr. Sci. 466 (2014) 45–57.

[6]. M. M. A. Khan, Rafiuddin, J. Appl. Polymer Sci. 124 (2012) 338–346.

[7]. D. Ghanbari, M. Salavati-Niasari J Indus Eng Chem. 24 (2015) 284-292.

[8]. P. Jamshidi, D. Ghanbari, M. Salavati-Niasari, J Indus Eng Chem, 20 (2014) 3507-3512.

[9]. D. Ghanbari, M. Salavati-Niasari M. Ghasemi-Kooch. J Ind Eng Chem. 20 (2014) 3970-3974.

[10]. P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie, Z. F. Liu, Sci. Total Environ. 424 (2012) 1–10.

[11]. L. Y. Ng, A. W. Mohammad, C. P. Leo, N. Hilal, Desalination 308 (2013) 15-33.

[12]. D. Wu, L. Wu, J. J. Woo, S. H. Yun, S. J. Seo, T. W. Xu, S. H. Moon, J. Membr. Sci. 348 (2010) 167–173.

[13]. L. Xu, H. K. Lee, J. Chromatogr. A 1216 (2009) 6549–6553.

[14]. M. Yousefi,  E. Noori, D. Ghanbari, M. Salavati-Niasari, T. Gholami, J Clus Sci 25 (2014) 397-408

[15]. J. Saffari, N. Mir, D. Ghanbari, K. Khandan-Barani, A. Hassanabadi, M R Hosseini-Tabatabaei (in press 2015)  DOI 10.1007/s10854-015-3622-y

[16]. T. W. Xu, W. H. Yang, B. L. He, Chem. Eng. Sci. 56 (2001) 5343–5350.

[17]. G. S. Gohil, V. V. Binsu, V. K. Shahi, J. Membr. Sci. 280 (2006) 210–218.

[18]. R. K. Nagarale, V. K. Shahi, S. K. Thampy, R. Rangarajan, React. Funct. Polym. 61 (2004) 131–138.