Microwave-assisted synthesis of SiO2 nanoparticles and its application on the flame retardancy of poly styrene and poly carbonate nanocomposites

Document Type: Research Paper

Authors

1 Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, I. R. Iran

2 Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran

10.7508/jns.2015.03.008

Abstract

Various morphologies of silica nanoparticles were synthesized by a microwave-assisted Pechini method. Silica nanostructures were synthesized via a fast reaction between tetra ethyl ortho silicate and ammonia at presence citric acid and other effective agents in Pechini procedure. Then for preparation of polymer-matrix nanocomposites, SiO2 nanoparticles were added to poly carbonate (PC) and poly styrene (PS) matrices. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). The influence of SiO2 nanostructures on the flame retardancy of the polymeric matrix was studied using UL- 94 analysis. Our results show that the SiO2 nanostructure can enhance the flame retardant property of the poly carbonate matrix. PC shows better flame retardancy compare to poly styrene.

Keywords


[1] Y-J Zhu, F. Chen, Chemica Review, dx.doi.org/10.1021/cr400366s

[2] D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Koch, J Indus Eng Chem. 20 (2014) 3970-3974

[3] L. Nejati-Moghadam, D. Ghanbari, M. Salavati-Niasari, A. Esmaeili-Bafghi-Karimabad , S. Gholamrezaei, J. Mater. Sci. Mater. Electron. 26, (2015) 6075-6085

[4] F. Zhang, S. Kantake, Y. Kitamoto, M. Abe, IEEE Trans. Magn. 35 (1999) 2751–2753.

[5] Y. Kitamoto, S. Kantake, S. Shirasaki, F. Abe, M. Naoe, J. Appl. Phys. 85 (1999) 4708-4710.

[6] A.E. Berkowitz, W. Schuele, J. Appl. Phys. 30 (1959) 134–135.

[7] D. Ghanbari, M. Salavati-Niasari, J Ind Eng Chem, 24 (2015) 284-292.

[8] K. Maaz, A. Mumtaz, S.K. Hasanain, A. Ceylan, J. Magn. Magn. Mater 308 (2007) 289-295.

[9] X. Chu, D. Jiang, Y. Guo, C. Zheng, Sens. Actuator B. 120 (2006) 177-181.

[10] C.C. Wang, I.H. Chen, C.R. Lin, J. Magn. Magn. Mater. 304 (2006) 451-453.

[11] Y.I. Kim, D. Kim, C.S. Lee, Phys. B 337 (2003) 42-51.

[12] Y. Shi, J. Ding, H. Yin, J. Alloys Compd. 308 (2000) 290-295.

[13] S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, J Indus Eng Chem. 20 (2014) 3335-3341.

[14] P. Jamshidi, M. Salavati-Niasari, D. Ghanbari, H.R. Shams, J Clust Sci. 24 (2013) 1151-1162

[15] S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, J Indus Eng Chem. 20 (2014) 4000-4007.

[16] D. Ghanbari, M. Salavati-Niasari, Korean J. Chem. Eng. 32(5), (2015) 903-910

[17] A. Esmaeili-Bafghi-Karimabad, D. Ghanbari, M. Salavati-Niasari, L. Nejati-Moghadam, S. Gholamrezaei, J. Mater. Sci. Mater. Electron. 26, (2015) 6970-6978

[18] G. Nabiyouni, D. Ghanbari, S. Karimzadeh, B. Samani-Ghalehtaki, J Nano Struc. 4 (2014) 467-474

[19] H.R. Momenian, M. Salavati-Niasari, D. Ghanbari, B. Pedram, F. Mozaffar, S. Gholamrezaei, J Nano Struc. 4 (2014) 99-104.