Investigations of Magnetic Properties Through Electrodeposition Current and Controlled Cu Content in Pulse Electrodeposited CoFeCu Nanowires

Document Type: Research Paper


1 Department of Physics, University of Kashan, Kashan 87317-51167, Iran

2 Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167, Iran



CoFeCu nanowires were deposited by pulsed electrodeposition technique into the porous alumina templates by a two-step mild anodization technique, using the single-bath method. The electrodeposition was performed in a constant electrolyte while Cu constant was controlled by electrodeposition current. The electrodeposition current was 3.5, 4.25, 5 and 6 mA. The effect of electrodeposition current and annealing on the magnetic behavior of the nanowires was investigated. Nanowires were fabricated with 30nm diameter and 100nm inter-pore distance with both bcc-CoFe and fcc- Cu phases. With increasing the electrodeposition current the Cu content decrease and the coercivity and magnetization increase up to its optimum value, then decrease. Annealing improved the coercivity, maximum coercivity was obtained for sample fabricated at 5 mA current. After annealing the magnetization decrease for all sampls. The X-ray diffraction pattern of the sample at electrodeposition current 3.5 mA after annealed indicates that Cu and CoFe phases separately was formed and separate peak related to CoFeCu alloy structure is not seen.


[1] J.I. Martin, J. Nogues, K. Liu, J.L. Vincent, I.K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003)

[2] M.S. Sander, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, Adv. Mater. 14, 665 (2002)

[3] J.X. Xu, K.Y. Wang, Y. Xu, Chemistry Letters 36 (2007) 868-875.

[4] M.B. Jeong, S. Martin, M. Martin, Journal of Physical Chemistry C 112 (2008) 2252-2260.

[5] X. Liu, J. Zhao, Y. Li, S. Xu, Z. Zhu, J. Chen, G. Wu, Chem. Lett. 36 (2007) 166-173.

[6] G.B. Ji, W. Chen, S.L. Tang, B.X. Gu, Z. Li, Y.W. Du, Solid State Commun. 130 (2004) 541- 550.

[7] S. Shamailaa, R. Sharif, S. Riaz, M. Ma, M. Khaleeq-ur-Rahmanb, X.F. Han, J. Magn.Magn.Mater.320 (2008) 1803-1810.

[8] Y. Dahmane, L. Cagnon, J. Voiron, S. Pairis, M. Bacia, L. Ortega, N. Benbrahim, A. Kadri, J. Phys. D: Appl. Phys. 39 (2006) 4523-4530.

[9] M. Ciureanu, F. Beron, L. Clime, P. Ciureanu, A. Yelon, T.A. Ovari, R.W. Cochrane, F. Normandin, T. Veres, Electrochim. Acta 50 (2005) 4487.

[10] J.M. Yang, Y.T. Hsieh, D.X. Zhuang, I.W. Sun, Electrochem. Commun. 13 (2011) 1178.

[11] D.S. Xue, J.L. Fu, H.G. Shi, J. Magn. Magn. Mater. 308 (2007) 1.

[12] R. Sharif, X.Q. Zhang, S. Shamaila, S. Riaz, L.X. Jiang, X.F. Han, J. Magn. Magn. Mater. 310 (2007) e830.

[13] R.L. Wang, S.L. Tang, Y.G. Shi, X.L. Fei, B. Nie, Y.W. Du, J. Appl. Phys 103 (2008) 07D507.

[14] M. AlmasiKashi, A. Ramazani, A. Khayyatian, J. Phys. D 39 (2006) 4130.