Synthesis and Characterization of Nanocrystalline Ni50Al50-xMox (X=0-5) Intermetallic Compound During Mechanical Alloying Process

Document Type: Research Paper

Authors

Department of Materials Science and Engineering, Shahid Bahonar University, 76135-133, Kerman, Iran

10.7508/jns.2015.03.004

Abstract

In the present study, nanocrystalline Ni50Al50-xMox (X = 0, 0.5, 1, 2.5, 5) intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. AlNi compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many researchers. Powders produced from milling were analyzed using scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The results showed that intermetallic compound of NiAl formed at different stage of milling operation. It was concluded that at first disordered solid solution of (Ni,Al) was formed then it converted into ordered intermetallic compound of NiAl. With increasing the atomic percent of molybdenum, average grain size decreased from 3 to 0.5 μm. Parameter lattice and lattice strain increased with increasing the atomic percent of molybdenum, while the crystal structure became finer up to 10 nm. Also, maximum microhardness was obtained for NiAl49Mo1 alloy.

Keywords


[1] S. Eghtesadi, N. Parvin, M. Rezaee, M. Salari, J. Alloys Compd. 473 (2009) 557-559.

[2] N. Duman, A.O. Mekhrabov, M.V. Akdeniz, Intermetallics 23 (2012) 217-227.

[3] R. Noebe, R. Bowman, M. Nathal, International Materials Reviews 38 (1993) 193-232.

[4] D. Miracle, J. Acta Mater. 41 (1993) 649-684.

[5] E. George, M. Yamaguchi, K. Kumar, C. Liu, J. Mater. Sci. Eng. A 24 (1994) 409-451.

[6] C.-K. Lin, S.-S. Hong, P.-Y. Lee, Intermetallics 8 (2000) 1043-1048.

[7] H.-P. Chiu, J.-M. Yang, R. Amato, J. Mater. Sci. Eng. A 203 (1995) 81-92.

[8] C. Liu, S. Jeng, J. Yang, R. Amato, J. Mater. Sci. Eng. A (1994).

[9] D. Johnson, X. Chen, B. Oliver, R. Noebe, J. Whittenberger, Intermetallics 3 (1995) 99-113.

[10] M. Choudry, M. Dollar, J. Eastman, J. Mater. Sci. Eng. A 256 (1998) 25-33.

[11] L. Sheng, W. Zhang, J. Guo, F. Yang, Y. Liang, H. Ye, Intermetallics 18 (2010) 740-744.

[12] R. Thompson, J.-C. Zhao, K. Hemker, Intermetallics 18 (2010) 796-802.

[13] G. Smola, W. Wang, J. Jedlinski, B. Gleeson, K. Kowalski, A. Bernasik, M. Nocun, Materials at High Temperatures 26 (2009) 273-280.

[14] A. Mashreghi, M. Moshksar, J. Alloys Compd. 482 (2009) 196-198.

[15] C. Suryanarayana, Progress in materials science 46 (2001) 1-184.

[16] J. Garcia Barriocanal, P. Pérez, G. Garcés, P. Adeva, Intermetallics 14 (2006) 456-463.

[17] M. Enayati, F. Karimzadeh, S. Anvari, J. Mater. Process. Technol. 200 (2008) 312-315.

[18] R. Darolia, D. Lahrman, R. Field, Scripta Metallurgica et Materialia;(United States) 26 (1992).

[19] A. Albiter, E. Bedolla, R. Perez, J. Mater. Sci. Eng. A 328 (2002) 80-86.

[20] L. Takacs, C. Suryanarayana, Warrendale, PA, TMS (1996) 453-464.

[21] D. Gavrilov, O. Vinogradov, W. Shaw, Simulation of Mechanical Alloying In A Shaker Ball Mill With Variable Size Particle, Proc. Int. Conf. on Composite Materials, ICCM-10, Woodhead Publishing, 1995, pp. 299-307.

[22] G. Williamson, W. Hall, J. Acta Mater. A 1 (1953) 22-31.

[23] C. Suryanarayana, M.G. Norton, X-ray diffraction: a practical approach, Springer, 1998.

[24] B. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading, MA, 1978.

[25] M. Rafiei, M. Enayati, F. Karimzadeh, J. Alloys Compd. 480 (2009) 392-396.

[26] L. Zhou, J. Guo, G. Fan, J. Mater. Sci. Eng. A 249 (1998) 103-108.

[27] C. Suryanarayana, Mechanical alloying and milling, CRC, 2004.

[28] G. Akbari, M. Taghian Dehaqani, Powder Metallurgy 54 (2011) 19-23.

[29] M. Azimi, G. Akbari, J. Alloys Compd. (2012).

[30] M. Azimi, G. Akbari, J. Alloys Compd. 509 (2011) 27-32.

[31] M. Alizadeh, G. Mohammadi, G.-H.A. Fakhrabadi, M.M. Aliabadi, J. Alloys Compd. 505 (2010) 64-69.

[32] S. Raj, Creep Behavior of Near-Stoichiometric Polycrystalline Binary Alloy, NASA TM-2002-2 1 12 10, Glenn Research Center, Cleveland, OH, 2002.

[33] E. Bonetti, E. Campari, L. Pasquini, E. Sampaolesi, G. Scipione, Nanostruct. Mater. 12 (1999) 895-898.

[34] K. CHAN, Scripta Metall. 24 (1990) 1725-1730.

[35] R.D. Noebe, R.R. Bowman, M.V. Nathal, The physical and mechanical metallurgy of NiAl, Springer, 1996.