The Effect of Annealing, Synthesis Temperature and Structure on Photoluminescence Properties of Eu-Doped ZnO Nanorods

Document Type: Research Paper

Authors

Department of Physics, Shahrood University, University Blvd, 3619995161 Shahrood, Iran.

10.7508/jns.2015.02.007

Abstract

In this study un-doped and Eu-doped ZnO nanorods and microrads were fabricated by Chemical Vapor Deposition (CVD) method. The effects of annealing, synthesis temperature and structure on structural and photoluminescence properties of Eu-doped ZnO samples were studied in detail. Prepared samples were characterized using X-Ray diffraction (XRD), scanning electron microscopy (SEM), particle size analysis (PSA) and Photoluminescence Spectroscopy (PL) analysis. XRD results indicated that all of samples have a wurtzite structure and Eu3+ ions were incorporated successfully into the lattice of ZnO nanostructures. SEM and PSA analysis exhibit nanorads rather than microrads samples have a more surface to volume ratio which cause to enhance surface defects. This study recommends that energy transfer (ET) from ZnO host to Eu ions via intrinsic defects at indirect excitation. By annealing due to decease of intrinsic defects particularly oxygen vacancy ET and consequently Eu ions emissions are decreased considerably. Pl analysis exhibit relative intensities of the electric-dipole and magnetic-dipole transitions were changed in different growth conditions.

Keywords


[1]. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, J. Appl. Phys. 98 (2005) 041301.

[2]. N. H. Alvi, K. ul. Hasan, O. Nur, M. Willander, Nanoscale Res. Lett. 6 (2011) 130.

[3]. S. Chakraborty, A. K. Kole, P. Kumbhakar, Mat Lett. 67 (2012) 362–364.

[4]. L. L. Yang, Q. X. Zhao, M. Willander, J. H. Yang, I. Ivanov, J. Appl. Phys. 105 (2009) 053503.

[5]. J. Ji, L. A. Boatner, F. A. Selim, Appl. Phys. Lett. 105 (2014) 041102.

[6]. F. A. Selim, M. H. Weber, D. Solodovnikov, K. G. Lynn, Phys. Rev. Lett. 99 (2007) 085502.

[7]. J. L. Gomez, O. Tigli, J Mater Sci.  48 (2013) 612–624.

[8]. E. Koushki, M. H. Majlesara, S.H. Mousavi, H. Haratizadeh, Curr. Appl. Phys. 11 (2011) 1164-1167

[9]. M. Willander, Y. E. Lozovik, Q.X. Zhao, O. Nur, Q.H.Hu, and P. Klason, Proc. SPIE Vol. 6486 (2007) 648614.

[10]. Z. N. Urgessa, O. S. Oluwafemi, J. K. Dangbegnon, J.R.Botha, Physica B. 407 (2012) 1546–1549.

[11]. N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, G. Cantwell, Appl. Phys. Lett. 81 (2002) 622.

[12]. X. O. Meng, D. Z. Shen, J. Y. Zhang, D. X. Zhao, Y. M. Lu, L. Dong, Z. Z. Zhang, Y. C. Liu, X. W. Fan, Sol. Stat. Comm. 135 (2005) 179.

[13]. N. E. Hsu, W. K. Hung, Y. F, Chen J. Appl. Phys. 96 (2004) 4671.

[14]. A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Lumm. 90 (2000) 123.

[15]. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, Appl. Phys. Lett. 68 (1996) 403.

[16]. F. Leiter, H. Alves, D. Pfisterer, N. G. Romanov, D. M. Hofmann, B. K. Meyer, Phys. B (2003) 201.

[17]. S. H. Jeong, B. S. Kim, B. T. Lee, Appl. Phys. Lett. 82 (2003) 2625.

[18]. H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim, S. Y. Lee, Mater. Sci. Eng. B 102 (2003) 313.

[19]. X. Liu, X. Wu, H. Gao, R. P. H. Chang, J. Appl. Phys. 95 (2004) 3141.

[20]. M. Liu, A. H. Kitai, P. Mascher, J. Lumm. 54 (1992) 35.

[21]. Y. W. Heo, D. P. Norton, S. J. Pearton, J. Appl. Phys. 98 (2005) 073502.

[22]. Q. X. Zhao, P. Klason, M. Willander, H. M. Zhong, W. Lu, J. H. Yang, Appl. Phys. Lett. 87 (2005) 211912.

[23]. P. Chea, J. Mengb, L. Guoa, J. Lumm. 122–123 (2007) 168–171

[24]. Y. Sh. Liu, W. Luo, H. Zhu, X. Chen, J. Lumm. 131 (2011) 415–422.

[25]. Y. P. Du, Y.W. Zhang, L.D. Sun, C.H. Yan, J. Phys. Chem. C 112 (2008) 12234.

[26]. P. Dorenbos, L. Pierron, L. Dinca, C. V. Eijk, A. K. Harari, B. Viana, J. Phys. Condens. Matter 15 (2003) 511.