CoFe Layers Thickness and Annealing Effect on the Magnetic Behavior of the CoFe/Cu Multilayer Nanowires

Document Type: Research Paper


1 Department of Physics, University of Kashan, Kashan 87317-51167, Iran

2 Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167, Iran



CoFe/Cu multilayer nanowires were electrodeposited into anodic aluminum oxide templates prepared by a two-step mild anodization method, using the single-bath technique. Nanowires with 30 nm diameter and the definite lengths were obtained. The effect of CoFe layers thickness and annealing on the magnetic behavior of the multilayer nanowires was investigated. The layers thickness was controlled through the pulses numbers: 200, 260, 310,360 and 410 pulses were used to deposit the CoFe layers, while 300 pulse for the Cu layers. A certain increase in coercivity and squareness of CoFe/Cu multilayer nanowires observed with increasing the CoFe layer thickness and annealing improved the coercivity and decrease squareness of CoFe/Cu multilayer nanowires. First order reversal curves after annealed showed amount domains with soft magnetic phase, it also shows decreasing spreading of distribution function along the Hu axis after annealed


[1] A Fert and L Piraux, J. Magn. Magn. Mater. 200  (1999) 338-342

[2] C R Martin, Chem. Mater. 8 (1996) 1739-1745

[3] T Onous, T Asahi and K Kuramochi, J. Appl. Phys. 92 (2002) 4545-4551

[4] Hao Y, Castano F J, Ross C A, Vgeli B, Walsh M E and Smith H I, J. Appl. Phys. 91  (2002) 7989-7995

[5] Kang J H, Lee S G, Hwang H M and Lee J, 2007 J. Korean Phys. Soc. 51 (2007) 1897-1904

[6] Darques M, Fruchart O and Cagnon L, Appl. Phys. Lett. 98 (2011) 112501-112507

[7] Qin X F, Deng C H, Liu Y, Meng X J, Zhang J Q, Wang F and Xu X H, IEEE Trans. Magn. 48  (2012) 3136-3142

[8] Y Li, D Xu, Q Zhang, D Chen, F Huang, Y Xu, G Guo and Z Gu, Chem. Mater. 11  (1999) 3433-3440

[9] G L Huang, H Okumura, H Hadjipanayis and H Weller, J. Appl. Phys. 91 (2002) 6869-6876

[10] I.D. Mayergoyz, IEEE Trans. Magn. 22 (1986) 603-610.

[11] P. Andreia, O. Caltunb, A. Stancu, Physica B 372 (2006) 265-271.

[12] N. Siadou, M. Androutsopoulos, I. Panagiotopoulos, L. Stoleriu, A. Stancu, T. Bakas, V. Alexandrakis, J. Magn. Magn. Mater. 323 (2011) 1671-1678.

[13] I. Panagiotopoulos, J. Magn. Magn. Mater. 323 (2011) 2148-2153.

[14] M. Ciureanu, F. Béron, P. Ciureanu, R.W. Cochrane, D. Ménard, A. Sklyuyev, A. Yelon, J. Nanosci. Nanotechnol 8 (2008) 5725-5731.

[15] H.L. Su, G.B. Ji, S.L. Tang, Z. Li, B.X. Gu, Y.W. Du, Nanotechnology 16 (2005) 429-436.

[16] M. AlmasiKashi, A. Ramazani, A. Khayyatian, J. Phys. D 39 (2006) 4130-4136.

[17] Ch.R. Pike, A.P. Roberts, K.L. Verosu, J. Appl. Phys. 85 (1999) 6660-6665.

[18] Ramazani A, Almasi Kashi M and Seyedi G, J. Magn. Magn. Mater. 324 1826 (2012)

[19] Almasi Kashi M, Ramazani A, Ghaffari M and Isfahani V B, J. Cryst. Growth 311 4581 (2009)

[20] Nielsch K, Muller F, Li A P and G¨osele U, Adv. Mater. 12 582 (2000)

[21] M. Almasi-Kashi, A. Ramazani, F. Kheyri, E. Jafari-Khamse , Materials Chemistry and Physics 144 (2014) 230-234

[22] F. Béron et al,” Electrodeposited Nanowires and Their Applications” (2010).

[23] D. A. Gilbert, G. T. Zimanyi, R. K. Dumas, M. Winklhofer, A. Gomez, N. Eibagi, J. L. Vicent, K. Liu, Sci. Rep, 10.1038, (2014)

[24] A. Ramazani, M. Almasi Kashi, V. Bayzi Isfahani, M. Ghaffari, Appl. Phys. A 98(2010) 691-698.